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Neural signatures of emotional intent and
inference align during social consensus

Marianne C. Reddan 1,2 , Desmond C. Ong3, Tor D. Wager 4,
Sonny Mattek 2, Isabella Kahhale5 & Jamil Zaki2

Humans effortlessly transform dynamic social signals into inferences about
other people’s internal states. Here we investigate the neural basis of this
process by collecting fMRI data from 100 participants as they rate the emo-
tional intensity of people (targets) describing significant life events. Targets
provide self-ratings on the same scale. We then train and validate two unique
multivariate models of observer brain activity. The first predicts the target’s
self-ratings (i.e., intent), and the second predicts observer inferences. Corre-
spondence between the intent and inferencemodels’predictions on novel test
data increases when observers aremore empathically accurate. However, even
when observers make inaccurate inferences, the target’s intent can still be
predicted from observer brain activity. These findings suggest that an obser-
ver’s brain contains latent representations of other people’s socioemotional
intensity, and that fMRI models of intent and inference can be combined to
predict empathic accuracy.

Healthy social functioning increases life expectancy1, buffers cognitive
decline2,3, improves mental health conditions like depression4, and
enriches a person’s daily life5. The quality of a social interaction is
shaped by two essential behaviors–how we signal our emotions and
how we infer the emotions of others6. People who make clear signals
and accurate inferences tend to have healthy adolescent adjustment,
stable relationships, and high subjective well-being7,8. Conversely,
people who make ambiguous signals and inaccurate inferences are
more likely to experience social isolation, and, in severe cases, may
meet criteria for clinical conditions like autism spectrum disorder9,
schizophrenia10, social anxiety11, and borderline personality disorder12.
Understanding how the brain processes socioemotional signals and
generates inferences can help pinpoint whether errors arise during
signal perception or inference-making. This understanding could aid
the development of personalized interventions that reduce loneliness
and improve public health13.

The neural processes that support conscious inference are
computationally complex and require the integration of multiple
sources of information such as an observer’s internal homeostatic

state, memories of their past experiences, expectations, and social
schemas14,15. Neuroimaging studies have implicated the amygdala,
medial prefrontal cortex (mPFC), temporoparietal junction (TPJ),
and precuneus16–18 in socioemotional inference; however, models of
how multiple brain regions interact with one another to form an
inference are lacking. Prior research also fails to disentangle signal
intent (the signaler’s intended message) from inference (the obser-
ver’s interpretation). Instead of intent, most research uses abstrac-
ted measures such as normative ratings and consensus
judgments19–21. This is partly because self-reported intent is not
available when stimuli are derived from normative data sets or
actors. The importance of studying intent is subtle, but significant.
Self-reported intent ratings are “intimate” to the signaler’s internal
processes and the meaning they wish to convey. The goal of natural
socioemotional signaling is for this intimate meaning to be under-
stood by the observer; not for the observer tomatch their inferences
with social norms6. Mutual understanding is the foundation of a
healthy relationship and promotes interpersonal cooperation13.
The Stanford Emotional Narratives Dataset (SENDv1)22 provides
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self-reported intent ratings, but has not been used in an fMRI study
until now.

Previous work correlating observer inferences to targets’ self-
reports found that accuracy is associated with higher activation in the
inferior parietal lobule (IPL), premotor cortex, superior temporal sul-
cus (STS), and mPFC18. Accuracy, however, is not a neural process, but
an outcome of social signal processing and inference formation. That
is, accuracy is determined by how the signaler compresses the infor-
mation they intend to convey into a recognizable social signal (e.g., a
grimace or lowering of the eyes), and how that signal is perceived and
interpreted by an observer. To better understand the neural mechan-
isms supporting accuracy in this task, it is critical to disentangle the
signaler’s intent from the observer’s inference and to model the dis-
tributed patterns of brain activity underlying each component. Such
models can then be combined to explain the factors that drive indi-
vidual differences in inference accuracy.

Naturalistic stimuli are necessary for the study of social signal
processing23. Though static and unimodal stimuli are useful for iso-
lating specific components of emotion perception and induction, low-
dimensional stimuli forgo the complexity of the dynamic environ-
ments we live in and limit our ability to study social behavior23–25.
Naturalistic audiovisual recordings allowus to capture the subtleties of
nonverbal communication, such as nuanced facial expressions, tone of
voice, and body language. Moreover, naturalistic stimuli reduce
demand characteristics26 and allow us to examine the context in which
social interactions occur. For instance, studying how people recognize
distress in real-life situations provides a better understanding of
empathic inference than asking people to rate emotions in a hypo-
thetical situation. First-person narratives, such as storytelling, are
particularly opportune stimuli for the study of real-world social
interactions23. Such stimuli can be sufficiently constrained in the
laboratory by limiting spurious background activity while still allowing
for the natural unfolding of dynamic socioemotional signaling22.
Overall, studying naturalistic stimuli can lead to a more accurate
understanding of real-world social interactions, which can inform the
development of treatments for social and emotional disorders.

To improve our understanding of how an observer’s brain per-
ceives signals and forms inferences in naturalistic contexts, here we
collect videos of people (targets) describing emotional events in their
lives (see Figs. S1 & S2). Immediately after recording themselves, tar-
gets provide moment-by-moment ratings of how they felt as they
spoke. These self-reports constitute the “intent” of their social signals.
We then scan a second set of participants (observers) with fMRI while
they view targets and rate what they thought the target was feeling at
eachmoment on the same scale (see Fig. 1a; Figs. S3–8). These ratings
constitute the observer’s live inferences. Correspondence between
observer inference and target self-report (intent) serve as ameasure of
empathic accuracy, or agreement between two people about what one
of them feels. Both sets of ratings are normalized and constrained to
five continuous levels of socioemotional intensity and used in a
regressionmodel to predict changes in participant-level fMRI data (see
Method detail). The resulting coefficient maps are then fed to a
regression-based machine learning algorithm to develop two neural
signatures of socioemotional processing– one indicative of the sig-
naler’s intent (i.e., the target’s self-report) and one indicative of the
observer’s inference. The models are cross-validated during training
and externally validated on held-out data after training. Finally, we test
if the models can be used concurrently to predict an observer’s
empathic accuracy and explore brain regions involved in the transition
from signal perception to a reportable inference.

Here we show, through high-quality naturalistic stimuli that reflect
real-world experiences, multivariate methods, and the self-reported
intentions of social targets, that two unique components of real-world
socioemotional inference can be predicted from observer brain activity
and combined to explain an individual’s empathic accuracy.

Results
Socioemotional intent can be predicted from observer brain
activity
We developed a whole-brain fMRI model that can predict a target’s
self-reported emotional intensity (i.e., signal intent) fromanobserver’s
brain activity. The model’s features (X) included the observers’
(N = 100) signal intent whole-brain coefficient maps, which were
derived for each intensity quintile via participant-level general linear
models (GLMs) of each observer’s timeseries fMRI data (Fig. 1a–c; see
Methods). Each observer had a set of five coefficient maps. The
dependent variable (Y) was the quintile’s numeric label (1–5). The
model was trained using least absolute shrinkage and selection
operator-regularized principal components regression (LASSO-PCR)27

and leave-one-subject-out cross validation (LOO-CV; Fig. 1d). After
training, the model’s external sensitivity and specificity to intent vs.
inferencewas validated on the held-out intent and inference validation
sets (see Fig. 1f & Fig. S5).

The model’s internal training accuracy is on par with previously
published fMRI models of emotion (see Fig. S9)— its average within-
subject correlation between predicted and actual ratings across each
CV fold is r =0.65 ± 0.34 (STD; standard deviation) which was sig-
nificantly greater than zero (t(99) = 18.91, P < 0.001, CI = [0.58 – 0.71];
overall Pearson’s r =0.50, P <0.001; CV mean square error (MSE) =
1.50; Fig. 2a). External validity was verified in the held-out intent vali-
dation set by calculating the average of prediction-outcome correla-
tions (average r =0.19 ± 0.002) and then testing if that value was
greater than zero in a two-tailed one-sample t-test (t(99) = 9.65,
P <0.001, CI = [0.15 - 0.23], Cohen’s d =0.23; see Fig. 2b). To test its
specificity to intent, we repeated this analysis in the held-out inference
validation set. The difference was not significant (average
r =0.18 ± 0.002; t(99) = 0.48, P =0.629, CI of mean difference = [-0.06
– 0.04]) in a two-tailed paired t-test. Both the training and validation
sets are derived from the same observers, but stimuli in the held-out
validation sets are unimodal (audio-only and visual-only) while the
stimuli in the training sets are multimodal (audiovisual). Full double
dissociation was established internally (within the modality of the
trainingdata) byperforming this validationprocedureon fMRI quintile
maps derived within each audiovisual stimulus (two-tailed paired
t(22) = 4.63, STD =0.27, Cohen’ s d = 1.13, P <0.001; Fig. S10A). Further
testing of this model on audiovisual and other socioemotional stimuli
is necessary to determine its out-of-sample sensitivity and specificity.

Our model of the target’s self-reported emotional intensity is
comprised of a distributed pattern of brain activity that relies most
significantly on activity in the right visual and anterior insular cortices
as well as the right angular gyrus, left posterior cingulate (PCC),
bilateral precuneus, and bilateral superior and inferior frontal gyri.
These features of importance were determined by conducting a
bootstrap hypothesis test (5000 bootstrap samples) over the model
weights and applying a significance threshold (FDR q < 0.05; see
Table S2 for a complete list). A more liberal threshold is applied to the
data in Fig. 2c for visualization.

Next, we compared the unthresholded brain pattern to other
brain maps in the NeuroSynth database28 to characterize functions
associated with this network. The intent pattern is largely unique from
previously published activation maps but is most similar to those
characterizing brain activity related to resting state, theory of mind,
person, social, autobiographical, beliefs, spatial, [scene] construction,
speech, and self-referential processing, respectively (Fig. 2d). The
unthresholded brain pattern was also compared to well-validated
brain-basedmodels of emotion, empathy, and interoception to further
gauge its sensitivity and specificity to the intended intensity of a tar-
get’s social signal (see Methods and Fig. S11). The intent model was
dissimilar from emotion models that predict how an observer feels in
response to an image or event (PINES29 cosine similarity = -0.03,
maximum cosine similarity = 1; NPS30 cosine similarity = -0.03; social
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rejection31 cosine similarity = -0.04). However, it was weakly similar to
naturalistic models of empathic care (cosine similarity = 0.06) and
distress32 (cosine similarity =0.10). Overall, this suggests that this brain
pattern is not reducible to self-reported feelings of emotional intensity
or to empathic processes in general.

Socioemotional inference can be predicted from observer brain
activity
Using the same procedure described above, we developed a model of
brain activity that can predict the level of intensity observers (N = 100)
ascribe to targets on amoment-to-moment basis (Fig. 1e). Themodel’s
average within-subject correlation between predicted and actual rat-
ingswas r =0.68 ±0.30 STD (t(99) = 22.72, P <0.001, CI = [0.62 –0.74];
overall Pearson’s r = 0.53, P <0.001; CV MSE = 1.52; Fig. 3a). The infer-
ence model was verified in the held-out inference validation set
(average r =0. 32 ±0.002) and was both sensitive (two-tailed one-
sample t(99) = 12.48, P < 0.001, CI = [0.27 - 0.37], Cohen’s d = 1.24) and
specific to observer inference ratings. That is, its performance on its
own validation set was significantly higher than its performance on the

intent validation set (r = 0.23 ±0.002) in a two-tailed paired t-test
(t(99) = 2.77, P = 0.007, CI of mean difference = [0.03 - 0.16], Cohen’s
d =0.33; Fig. 3b). To further validate this double dissociation, the
model was tested on an additional internal validation set comprised of
fMRI quintile maps derived within each audiovisual stimulus
(Fig. S10B). Again, the inference model had significantly better per-
formance on the inference test set compared to the intent test set
(two-tailedpaired t(22) = 2.08, STD=0.22, Cohen’sd = 0.45, P = 0.049),
confirming the double dissociation between the two models.

The brain regions that most significantly contributed to the pre-
diction of observers’ inferences include the cerebellum (bilateral crus),
left precuneus, right primary somatosensory cortex (S1), right inferior
frontal gyrus (IFG), bilateral superior medial frontal gyrus, bilateral
lingual gyrus, bilateral temporal pole, and bilateral anterior insular
cortex (5000 bootstrap samples; FDR corrected q <0.05; see Table S3
for complete list; see Fig. 3c thresholded at P <0.01 uncor-
rected (unc.)).

Again, we compared the unthresholded brain pattern to other
published brain maps to characterize functions associated with this

Fig. 1 | Training schematic for fMRImodels of intent and inference. a Targets
recorded themselves telling emotionally significant personal stories, then rated
their videos on a continuous bivalent scale. Target self-ratings (red) served as the
intent of the socioemotional signals conveyed in the videos. Observers viewed
these 24 videos in the MRI and rated what they thought the target felt, moment-
by-moment, on the same scale. These comprised the inference ratings (blue).
There were three types of trials: audiovisual, audio-only, and visual-only; how-
ever, the 8 audiovisual trialswere the trials of interest (see Fig. S3). Both the intent
and inference ratings were transformed into valence-independent intensity
quintiles tomodel the fMRI data.b, c Participant-level GLMpredicting intent and
inferencequintiles. A predictorwas constructed for each rating quintile (q = 5) for
each stimulus (s = 24) for each participant (N = 100) and applied to each partici-
pants’ voxel timeseries, yielding a set offivewhole-brain coefficientmaps for each
participant, for each model type (intent and inference). Maps from audiovisual
trials were used for model training. Maps from unimodal trials were held-out and

used for external validation (see Figs. S4, 5 for details). d, e Multivariate model
training. Twomodels were trained from the same audiovisual stimuli: One aimed
to characterize signal intent and the other aimed to characterize the observer’s
inferences. First, brain activity for each intensity quintile, within each participant,
was averaged into a single beta map (these voxels comprised the model’s fea-
tures). Next, two multivariate LASSO-PCR models were trained to predict intent
and inference intensity quintiles (Y = 1 to 5, 5 being the highest intensity) from
their corresponding coefficient maps (features) across all participants using
leave-one-participant-out cross-validation (LOO-CV). Plotted on the surfacemaps
are the unthresholdednormalized predictive Z-weights for eachmodel. f External
validation. Bothmodels were applied to held-out intent and inference coefficient
maps developed on held-out auditory-only and visual-only trials (see Method
detail). The intent model was expected to accurately predict intent ratings, but
not inference ratings, and vice versa.
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network. The networks and functions in the NeuroSynth database
most similar to the inference model were: resting state, somatosen-
sory, person, theory of mind, social, spatial, foot, moral, self-refer-
ential, and beliefs, respectively (Fig. 3d). The inference model was
unique from the intent model in that it was associated with maps
related to somatosensory simulation and bodily action. When we
compared the inference model to the brain-based models of emotion,
empathy, and interoception in Fig. S11, we found that, like the intent
model, the inference model is unique from existing signatures but has
a small positive cosine similarity with models of dynamic human-
to-human empathic processing.

fMRI patterns underlying intent and inference are dissociable
Both the intent and inference models were developed on observer
brain activity; however, they reveal dissociable components of socio-
emotional processing (cosine similarity between intent and inference
pattern weights = 0.29). To further investigate their dissociability, we
assessed general overlap of voxels that significantly contribute to each
model’s performance. After thresholding, the only overlap was in the

right anterior insula (Fig. S12), however, these voxel-wise patterns in
the bilateral insular cortex (mask from Harvard-Oxford Atlas) were
unique (cosine similarity = 0.22). Together, thesemetrics indicate that
the two models capture unique components of socioemotional brain
activity.

Next, we tested if subject-level fMRI patterns related to intent and
inference are separable at each level of stimulus intensity. To do this,
we trained binary linear support vector machines (SVMs) via LOO-CV
(seeMethods) to separate subject-level intent and inferencemaps (see
Fig. S5) at each level of rating intensity. These are the samemaps used
as training data for the intent and inference models in Figs. 2 and 3.
Each SVMs classification accuracy (acc.) was significantly greater than
chance (level 1: acc. = 70.00% ±3.3%, P < 0.001, Area Under the Curve
(AUC) = 0.69; level 2: acc. = 69.00% ±3.3%, P < 0.001, AUC =0.75; level
3: acc. = 70.00% ±3.3%, P <0.001, AUC=0.73; level 4: acc. = 69.00% ±
3.3%, P < 0.001, AUC=0.68; level 5: acc. = 70.00% ±3.3%, P <0.001,
AUC =0.75) indicating that the intent and inference fMRI patterns are
linearly separable, and therefore, represent unique processes (Fig. 4a).
To better understand the brain regions that distinguishbetween intent
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Fig. 2 | Intentmodel. a Training. Themodel was trained to predict the target’s self-
reported emotional intensity from the observer’s brain. A prediction-outcome
correlation was calculated across each cross-validated (CV) training fold (average
Pearson’s r =0.65 ± 0.34 STD across folds is significant in a two-tailed one-sample
t-test: t(99) = 18.91, p <0.001, CI = [0.58 – 0.71]). The target’s true self-reported
intensity level (y) is plotted on the x-axis. The model’s prediction of the intensity
level (y-fit) is plotted on the y-axis. b Validation. The model was validated by cal-
culating the prediction-outcome correlation across five levels of self-reported
intensity within participants in held-out validation trials (see Fig. S5). Average r
values for each participant (N = 100) are plotted on the y-axis (orange bar). The
model is sensitive to its validation set (t(99) = 9.65, P <0.001) in a two-tailed one-
sample t-test. To test its specificity, we repeated this analysis in the inference
validation set (gray bar). The intent model had a higher fit on the intent validation

set than the inference set, but the difference was not significant (see Fig. S10A for
internal validations). Data are represented in box plots where themedian is a black
line and the upper and lower whiskers represent the bounds of the quartiles.
c Feature importance. The model’s voxel-weight map (Fig. 1b) is loosely thre-
sholded (P <0.01 uncorrected (unc.)) based on a bootstrap (5000 samples)
hypothesis test and plotted for visualization (FDR thresholded regions in Table S1).
Activity in right visual and right anterior insular cortices, as well as right angular
gyrus, left posterior cingulate cortex (PCC), bilateral precuneus, and bilateral
superior frontal gyrus were most important for this prediction. d Associated
NeuroSynth terms. The unthresholded predictive weight map was fed to the Neu-
roSynth topic map decoder. A word cloud was constructed of the top 20 terms
(excluding singular brain regions).Word size is scaled by strength of similarity. The
top five terms are colored orange.
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and inference, we performed a bootstrap (5000 samples) hypothesis
test over the predictive voxel weights for the classifier trained at the
highest level of intensity (level 5) and thresholded the weights
(P < 0.05, unc.) so that the brain regions where intent and inference
maximally diverge could be compared (Fig. 4b). Patterns of activity in
the dorsal anterior cingulate (dACC), PCC, anterior insula, pallidum,
and precuneus maximally separate intent and inference at the highest
level of socioemotional intensity. These regions correspondwith those
that diverge at the lowest level of intensity (see Fig. S13). Together,
these analyses indicate that the multivariate patterns which comprise
the intent and inference models are dissociable from one another and
therefore reflect unique, but simultaneous, components of socio-
emotional processing.

Alignment of intent and inference is related to empathic
accuracy
After we identified these two components of socioemotional proces-
sing, we sought to test how they interact in relation to an individual
person’s empathic accuracy. To do this, we applied the intent and
inference models to participant-level fMRI data when participants

made (a) inaccurate inferences (low empathic accuracy) and (b)
accurate inferences (high empathic accuracy; see Fig. 5a,
Fig. S5 and S15–16, and Methods for details). Then we correlated the
predictions of the two models across all participants. When partici-
pants are inaccurate, there is more variance across the predictions of
the intent and inference models, and, therefore, they are weakly cor-
related (r = 0.28, P =0.004; Fig. 5a). However, when participants are
highly accurate, there is less variance between the model predictions,
and they are better correlated (r =0.64, P <0.001). The alignment
between the twomodelswas significantly greater during high accuracy
performance than low accuracy performance (two-tailed z-test
of the correlation difference z = 3.26, P = 0.001, CIr1 = [0.51–0.74],
CIr2 = [0.09–0.45], Cohen’s q = 0.47; Fig. 5b). We verified this effect in
the validation trials (low empathic accuracy alignment r =0.58,
P <0.001; high empathic accuracy alignment r =0.79, P <0.001; two-
tailed z = 2.83, P =0.005, CIr1 = [0.70–0.85], CIr2 = [0.43–0.70], Cohen’s
q =0.41; Fig. 5c). This analysis indicates that when an observer is
making accurate inferences, both neural patterns predictive of signal
intent and neural patterns predictive of observer inference are highly
similar to the observer’s brain activity at that moment. That is, greater
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Fig. 3 | InferenceModel. aTraining. Themodelwas trained to predict anobserver’s
inference from their brain activity. A prediction-outcome correlation was calcu-
lated across each training fold (average Pearson’s r =0.68 ± 0.30 STD across folds is
significantly greater than zero in a two-tailed one-sample t(99) = 22.72, p <0.001,
CI = [0.62 – 0.74]). The observer’s true inferred intensity level (y) is plotted on the
x-axis. The model’s prediction of the intensity level (y-fit) is plotted on the y-axis.
b Validation. The inference model was verified in its held-out validation trials
(average r =0.32 ± 0.002 is significantly greater than zero in a two-tailed one-
sample t(99) = 12.48, P <0.001, CI = [0.27 − 0.37]). Average r values for each par-
ticipant (N = 100) in the inference validation set are plotted on the y-axis (gray bar).
To test its specificity, we repeated this test in the intent validation set (orange bar).
The inference model fits its own validation set better than the intent validation set

(two-tailed paired t-test (t(99) = 2.77,P =0.007, CI = [0.03−0.16], Cohen’s d =0.33).
Data are represented in box plots where the median is a black line and the upper
and lower whiskers represent the bounds of the quartiles. c Feature importance.
The voxel-weight map is liberally thresholded (P <0.01 unc.; see Fig. 1c) based on a
bootstrap hypothesis test (5000 samples) and plotted for visualization (see
Table S2 for FDR thresholded regions). Activity in the cerebellum (bilateral crus),
precuneus, primary somatosensory cortex (S1), inferior frontal gyrus, bilateral
superior medial frontal gyrus, lingual gyrus, temporal pole, and anterior insular
cortex were most important for this prediction. d Associated NeuroSynth terms.
The terms in the Neurosynth database most similar to the inference model are
plotted as a word cloud and scaled by strength of similarity. The top five terms are
colored orange.
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concordance between the neural pattern predictive of target’s inten-
ded signal intensity and the neural pattern predictive of observer
inferences indicates greater empathic accuracy. Quantitative descrip-
tions of observer accuracy across stimuli in this study are included in
Figs. S7 & S8.

Exploratory: brain regions that transform intent into inference
In a post-hoc exploratory univariate analysis, brain activity during low
accuracy trials (see schematic in Fig. 5a) was used to predict (X) the
pattern expression of the inferencemodel (Y) while controlling for the
pattern expression of the intent model. Pattern expression is the dot-
product between two multivariate patterns (see Methods for details).
Low accuracy trials were selected so regions where inference-related
activity maximally diverged from activity related to intent recognition
could be isolated. The resulting univariate model weights were cor-
rected for multiple comparisons (FDR q < 0.05, k = 25). Positive clus-
ters were revealed in the right primary somatosensory cortex (S1) and
right parahippocampal gyrus (PHG; Fig. 6). Negative clusters were
revealed in the left insula and left primary motor cortex (M1). Obser-
vers tap their fingers when they make a rating, therefore, we tested if
this motor activity was similar to activity related to finger tapping in
the NeuroSynth Database. It was dissociable (cosine similarity = -0.07)
and therefore, unlikely to be related to the execution of button
pressing. These exploratory results may suggest that S1, M1, and PHG
are associated with the formation of socioemotional inferences above
and beyond latent recognition of a signal’s intent. Albeit, in this ana-
lysis, activity in these regions is implicated in the formation of an
incorrect inference. Note, though individual observer’s accuracy in this
task varies (see Figs. S7 and S8A), observers’ownemotional intensity in
response to the target (i.e., how the observer feels) was consistently
correlated with what they inferred the target was feeling (average
within-person r =0.89 (0.19 STD); see Fig. S8B). This suggests that
when an observer makes an incorrect inference about a target, they
may be reporting what they feel themselves and may use auto-
biographical memory to do so.

Exploratory: functional connectivity predictive of inference
accuracy
Pairwise distance correlation matrices were calculated across pre-
processed timeseries data from 272 brain regions from the

Brainnetome Atlas33 for each audiovisual stimulus (Fig. S17A, B).
Degree centrality was calculated for each node, on average, for each
participant and then correlated with participant’s overall empathic
accuracy performance (Pearson’s r) on the audiovisual portion of the
task (Fig. S17C–E). Degree centrality is equal to the number of ties a
node has. High degree centrality indicates high importance of a node
in a connectivity network. We found three significant correlations
(P < 0.05, unc.) in this exploratory post hoc analysis: right PHG
(r =0.22, P = 0.032), right cingulate gyrus (rostroventral area 24;
r =0.24, P = 0.019), and (e) right inferior temporal gyrus (ITG; r =0.22,
P =0.032). This suggests that activity in these brains regions is related
to empathic accuracy.

Discussion
The effectiveness of social signaling depends upon both the intended
meaning of the signal and the interpretation of the signal by an
observer (i.e., socioemotional inference)6. To better understand how
social signaling is processed in the brain, we sought to dissociate the
neural patterns underlying signal intent and inference in a dynamic
naturalistic storytelling paradigm and test how these patterns relate to
empathic accuracy. We found that both intent (the target’s self-
reported emotional intensity) and observers’ inferences about the
target’s emotional intensity could be predicted from observers’ brain
activity. The multivariate brain patterns derived from these predic-
tions are dissociable; however, when the models’ predictions align,
observers make more accurate inferences. We interpret these findings
to suggest, in part, that there is some latent recognition of a social
signal’s intended intensity that observers candrawuponwhen forming
a conscious inference.Moreover, these findings suggest that observers
can have an accurate latent representation of another person’s intent
even when making an incorrect inference.

How can it be possible that the intended intensity of another
person’s social signals can be decoded from observers’ brain activity,
and that this neural pattern is dissociable from the pattern predictive
of observers’ conscious inferences? Human adults have highly adept
schemas for social information that are activated when they perceive
prototypical socioemotional expressions34. Prior work has found that
rich, category-specific visual features canbe readilymapped to distinct
emotions that are coded acrossmany brain regions, including primary
visual cortex21. Unless a target is intentionally trying to deceive an
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Fig. 4 | Separability of intent and inference fMRI patterns. a We tested if brain
activity patterns (N = 100) related to the target’s self-report (signal intent) and the
observer’s inference are separable at each level of stimulus intensity. Binary SVMs
revealed pattern separability at each level (level 1: accuracy (acc.) = 70.00% ± 3.3%,
P <0.001, AUC=0.69; level 2: acc. = 69.00% ± 3.3%, P <0.001, AUC=0.75; level 3:
acc. = 70.00% ± 3.3%, P <0.001, AUC=0.73; level 4: acc. = 69.00% ± 3.3%, P <0.001,
AUC =0.68; level 5: acc. = 70.00%± 3.3%, P <0.001, AUC=0.75). Receiver operating
curves (ROC) visualize the sensitivity and specificity of the SVMs which separated
the patterns. Curves are colored shades of blue, where lighter shades are lower

intensity levels and darker shades are higher levels. b To better understand the
brain regions that distinguish between signal intent and inference, the predictive
voxel weights for the SVM classification at level five (high intensity) a bootstrap
hypothesis test (5000 samples) was conducted over the weights and a weak sig-
nificance threshold (P <0.05, unc.) was applied. Here, inference maps are the
positive class. Patterns of activity in the dorsal anterior cingulate (dACC), posterior
cingulate (PCC), pallidum, insula, and precuneus maximally separate intent and
inference at the highest level of socioemotional intensity (see Fig. S12 for maps of
the other levels).
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observer, or has a disorder that impacts socioemotional communica-
tion, a target will convey information in a manner that will activate the
correct schema in an observer14. That is the function of social signal-
ing– to convey information in a manner that will be quickly and
accurately understood by the individual an animal is conveying it to6.
We suspect that the intent pattern revealed in this investigation is
capturing this process of schema-activation in the observers.
Schema activation in this investigation is specific to the intensity of a
signal.

Subcortical brain regions commonly implicated in emotion per-
ception (i.e., the amygdala, striatum, and periaqueductal gray) were
not identified among the features of highest importance in the intent
or inference models. Instead, the distributed patterns of important
features primarily included cortical regions that perform complex
multisensory integration (i.e., angular gyrus, frontal gyrus, PCC, tem-
poral pole, and the precuneus)35. From a constructionist perspective,
which theorizes that emotions are flexible processes inseparable from

the context in which they emerge36,37—the intent pattern may reflect
neural processing that abstracts the perceptual input (i.e., facial
expressions, body movements, speech, and vocal intonations) into
socioemotional schemas related to intensity. Similarly, the inference
model may represent a subsequent stage of processing, where the
information the target signaled is related to the observers’ auto-
biographical past, current experiences, and their expectations for the
future. Indeed, observers’ overall inferences were highly correlated
with their own emotional responses to the stories (Fig. S8C), sug-
gesting that autobiographical recall and mood induction are con-
current, if not interwoven, processes contributing to inference
formation. The voxel pattern of the inference model, which relies
primarily onmentalizing networks and brain areas implicated in social
abstraction and somatosensory processing (the temporal pole and S1,
respectively)38, provides further support for this hypothesis. Being that
the intent and inference models were (1) dissociable, (2) verifiable in
their ownheld-out validation sets, and (3) unique fromother published

Fig. 5 | Alignment between the intent and inference models is related to
empathic accuracy. a Schematic of alignment analysis. To test how each model’s
predictions relate to an observer’s empathic accuracy, we took the dot-product
between each model and each individual subject’s (N = 100) brain activity during
periods of time when observer empathic accuracy performance was at its highest
and lowest (see Fig. S5), and then added in the models’ intercepts. b Alignment
comparison. To test how the alignment of the intent and inference patterns are
related to empathic accuracy, we correlated each model’s predictions across all
participants. When participants are inaccurate, there is more variance across the
predictions of the intent and inference models, and therefore they are weakly
correlated (r =0.28, P =0.004). However, when participants are highly accurate,
there is lower variance between the models’ predictions, and they are better cor-
related (r =0.64, P <0.001). The alignment between the two models was

significantly greater during high accuracy performance than low accuracy perfor-
mance (two-tailed Fisher’s z-test of the correlation difference z = 3.26, P =0.001,
CIr1 = [0.51 – 0.74], CIr2 = [0.09 – 0.45], Cohen’s q =0.47). Both r values from the
scatter plots are also plotted as orange bars with confidence intervals derived from
Fisher’s z-tests. c Alignment comparison on validation set. This result— that align-
ment between the two models was significantly greater during high accuracy per-
formance (r =0.79, P <0.001) than low accuracy performance (r =0.79, P <0.001)
was replicated in held-out validation trials (two-tailed Fisher’s z = 2.83, P =0.005,
CIr1 = [0.70 – 0.85], CIr2 = [0.43 – 0.70], Cohen’s q =0.41). The r values from the
validations are plotted as purple bars with confidence intervals derived from the
Fisher’s z-tests. This analysis indicates that the models developed in Figs. 2 & 3 can
be combined to predict an observer’s empathic accuracy.
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models of emotion induction, like PINES29, we suspect that they cap-
ture two unique components of social signal processing– schema
activation and deliberate inference formation.

When the intent and inference models’ predictions aligned in the
brains of the observers, observers made more accurate inferences.
Furthermore, the two models could be combined to predict the
empathic accuracy in the held-out validation sets. Our follow-up
exploratory analysis indicated that when individuals made inaccurate
inferences, activity in right S1 and PHG increased with the intensity of
their inferences, above and beyond the expression of the intent pat-
tern. The centrality of the PHG in a network of functional connectivity
during the inference task was also correlated with individual differ-
ences in overall empathic accuracy performance (Fig. S17). We spec-
ulate that somatosensory simulations, via S1, and autobiographical
recall, via PHG39, support the transformation of a socioemotional sig-
nal into a conscious, reportable inference. However, interpretations of
this activity should be approachedwith caution due to the exploratory
nature of the analysis. Part of the transformation from intent to
inference in this paradigm requires amotor response: Observer’smust
update their ratings with a button press. Therefore, it is difficult to
disentangle this brain pattern from button pressing entirely; however,
this pattern of brain activity was dissimilar from patterns associated
with finger tapping in the NeuroSynth database. Furthermore, though
the left lateralization of activation inM1 was consistent with the (right)
hand making the ratings, the positive clusters in S1 and the PHG were
ipsilateral to the ratings-hand. Prior research that shows S1 activates
during motor imagery and empathy40–43. Furthermore, a growing
thrust of empathy research purports a role for somatosensory simu-
lations in the understanding of social interactions44–46. Together, these
results suggest that inference involves an internalizing of the events
describedby the target, and thatpeople simulate the actions described
and relate them to their own prior experiences and expectations. This
summary dovetails with our behavioral finding that observers con-
sistently report their own feelings to be concordant with what they
think the target feels (Fig. S8). That is, participants draw upon their
own experiences and feelings when trying to make sense of the feel-
ings of others47.

This study has several limitations. First, intent and inference rat-
ings occur spontaneously and simultaneously in this paradigm which

makes it difficult to ensure complete separation of these constructs in
the observer’s brain. We did, however, perform independent valida-
tions which supported the dissociability of the intent and inference
models across stimuli (see Fig. S10). Second, target self-reports may
not perfectly match their actual feeling state at the time of story; it
could be influenced by self-reflection, mood at the time of report, or
by social desirability48. Third, the generalizability of these findings to
different cultures is unknown and, due to cultural variation in verbal
and non-verbal communication, it is possible that our sample, which is
largely comprised of Stanford University undergraduates, cannot be
reproduced in other age, socioeconomic, or cultural groups (see
Fig. S1). Fourth, though the stimuli themselves are highly dynamic and
complex, the models are trained to predict only a single dimension of
socioemotional information: intensity. This was done because natur-
alistic stories often signal positive and negative information at a
faster rate than we can sample fMRI data49. For example, a participant
may be describing both the sadness and the love they felt after the
death of a family member. These are intense, complex emotions,
therefore, removing valence from individual ratings allowed us to
better model dynamic shifts in emotion signaling and to isolate sig-
natures of signal intent from observer inference. Indeed, including
valence information did not improve the accuracy of our models (see
Fig. S13). Further validation of our models on other naturalistic and
social audiovisual data is necessary to determine their sensitivity and
specificity to both a target’s self-reported internal emotional state
and an observer’s conscious inference of that state. Additionally, we
did not analyze story content or language in this study because video
randomization reduced our power to isolate content-specific activity
(not every participant observed the same audiovisual story). Future
work will seek to train finer grained models of story context over
time to decode higher-dimensional socioemotional content from
observer brain activity.

Various neuroimaging studies have attempted to predict aspects
of socioemotional processing from human brain activity (see Fig. S9
for a summary). Here, we situate socioemotional processing within the
ethological framework of social signaling and inference. This frame-
work is important—Sharing information is essential to thewell-being of
individuals and their communities because individuals must interact
with each other to achieve personal needs that cannot be achieved
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Fig. 6 | Exploratory analysis of brain regions uniquely related to the inference
model’s pattern expression during low accuracy trials. In this exploratory uni-
variate analysis, brain activity during low accuracy trials (see schematic in Fig. 5 and
Fig. S4) was used to predict the pattern expression of the inference model while
controlling for the pattern expression of the intent model across participants
(N = 100). Plotted are the standardizedweights corrected voxel-wise (q< 0.05 FDR)
for multiple comparisons. Clusters of 25 contiguous voxels were retained for dis-
play and interpretation purposes. Warm colors indicate positive weights and cool

colors indicate negative. When controlling for expression of the intent pattern,
activity in the right primary somatosensory cortex (S1) and parahippocampal gyrus
(PHG) increases with the inference pattern expression, while activity in the left
insula (Ins) and primary motor cortex (M1) decreases with the inference pattern
expression. This analysis captures brain regions that may influence the inference
pattern (brain activity predictive of an observer’s inference of socioemotional
intensity), independent of the intent pattern.
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alone. Effective signaling can engender social bonds, mutual aid, and
collaboration50. Ineffective signaling, however, can be costly. Amissed
alarm call can result in death, while misunderstanding social signals
can result in ostracization or rejection. By providing insight into how
the human brain interprets social signals, the current research may
provide inspiration for the development of interventions aimed at
reducing loneliness and social isolation.

Methods
Experimental model and subject details
One hundred (59Women, 37Men, 4 No Response, average age = 25.23
STD= 9.96) adult healthy members of the Stanford University com-
munity participated in this study. Gender was determined via partici-
pant self-report. Participants were asked to indicate which gender they
best identified with (male or female) and were given the option to not
identify. Forty-two participants identified as White, 32 as Asian Amer-
ican, 14 as Hispanic/Latinx, 7 as Black, and 5 did not report their race
(see Supplementary Fig. 1a). Participants were asked to provide their
gender in binary terms (male or female). Participants were asked to
complete the MacArthur Scale of Subjective Social Status51. Average
perceived socioeconomic status (SES) on the 10-point ladder scale was
6.71 (STD= 1.57). SES was skewed towards the upper and upper-middle
classes (Mode = 7; Median = 7). Eighty-nine participants reported
having at least some college education (this includes those currently
enrolled as Stanford undergraduates). Eighty-three reported that their
parents hadat least somecollege education. Participantswere all right-
handed.

Participants were recruited through internal and surrounding
communities near Stanford University in Stanford, CA. All participants
gave informed consent andwere compensatedmonetarily via Amazon
gift cards for their participation. Though we aimed to have a repre-
sentative sample in both the target sample and observer sample, nei-
ther sex nor gender was a part of the study design. Effects of gender
were not expected or intended to be studied. A post-hoc analysis
concluded there was no effect of gender on inference accuracy
(Table S5). This study was approved by the Stanford University Insti-
tutional Review Board.

Experimental procedures
Eligibility criteria. Participants were required to be between the ages
of 18 to 65. Participants who had contraindications for the MRI envir-
onment were excluded from this study. Sample size was determined
via previously published studies of empathic accuracy and narrative
storytelling23. No statistical method was used to predetermine sam-
ple size.

Stimuli. We selected a subset of 24 videos (19 unique targets or
storytellers) from a curated high-quality video dataset of 193 video
clips of 49 volunteers describing emotional life events known as the
Stanford Emotional Narratives Dataset (SENDv1)22. The targets used in
this selection were balanced for gender (11 Women and 8 Men) and
racial representation (9 White, 5 Black, 4 Asian, and 1 Latinx/Hispanic;
see Fig. S1A). Many of the targets were current students. Self-ratings of
bi-valent emotional intensitywereobtained from targets on amoment-
by-moment bipolar scale (very negative to very positive). Targets
recorded their videos and then immediately watched them to provide
the self-ratings. Twelve of the 24 videos featured negative life events,
while the other 12 featured positive life events (see Fig. S2 for a visual
summary of story content). Videos were cut down in length so that
they ranged from 1 - 3minutes. Five targets contributed two separate
videos (one positive, one negative) to this dataset, however, trials with
duplicate targets were not used in themain analysis (see Experimental
Session for more information). Stimuli were displayed using Psy-
chtoolbox v3 via MATLAB R2017B.

Randomization. This is a within-subjects design, where stimulus pre-
sentationwas pseudorandomized in three a priori orders. Each subject
was randomly assigned to an order when they signed up for the
experiment. Video presentation and intertrial interval (ITI) lengths
were shuffled andfixed to anordernumber. The Investigatorswerenot
blinded to allocation during experiments and outcome assessment.

Practice session. All participants completed a “practice session”
before the experiment, where they learned how to make their ratings
on the slider provided. Participants viewed 10-s clips of stimuli from
the SENDv1 dataset that are unique from those used in the study.

Experimental session. All 100 participants were shown the narrative
story stimuli while inside the fMRI environment. While viewing, parti-
cipants rated the emotional-narrative stimuli moment-by-moment on
the rating scale bywayof button presses thatmoved a slider on screen.
Participantspressed thebuttons tomove it right or leftwith their index
and middle finger, respectively, of their right hand. There were three
sensory conditions in this experiment: a visual-only condition, where
participants could see but not hear the videos (8 trials); an auditory-
only condition where they could hear but not see the videos (8 trials);
and an audiovisual condition where they could both see and hear the
videos (8 trials). There were 24 trials total, divided into two runs of 12
trials each (See Fig. S3A). The audiovisual condition (8 trials) was the
basis of the model training data and is the modality of interest in the
present study. The other two conditions were combined and used as a
held-out validation set. Due to a coding error, only 23 videos were
spread across the audiovisual condition during counterbalancing (the
missing videowas negatively valanced; see Fig. S7 for a depiction of the
valence of all the audiovisual stimuli). Five targets contributed two
separate videos (one positive, one negative) to this dataset, however,
the sensory channel of presentation was not repeated within targets.
Videos were separated by an ITI (fixation cross) that ranged from
4 - 12 s.

Post-experiment session. Immediately after the fMRI experiment,
participants were shown 10 s clips of each video they watched in the
scanner, in the same sensory modality (auditory-only, visual-only, and
audiovisual) andorder thatwaspresented to them in the scanner. First,
participants answered True-False questions about the story to assess
comprehension and attention. Next, participants were asked if the
target was familiar to them. The targets were recruited on Stanford
campus; therefore, it was important to confirm that our participants
were not friends or acquaintances with the targets. Participants were
also asked to rate the overall emotional intensity of the stimulus aswell
as the overall emotional intensity they felt in response to the stimulus
on the same bi-valent scale they used during the experiment. This
session was displayed via MATLAB R2017B on an Apple laptop com-
puter in an experiment room in the lab.

Data collection
Ratings acquisition. Participants were asked to “rate how positive or
negative you think the target is feeling moment to moment” on a
bipolar visual analog scale (VAS) with anchor points very negative to
very positive. Participants did not see any number responses, but their
ratings were recorded on a scale from0 to 100. Ratings were collected
via a 2 × 4 bimanual button box through the fORP 932 modular
response box system. Ratings were collected through Psychtoolbox v3
(http://psychtoolbox.org/) in MATLAB R2017B, and were sampled by
Psychtoolbox every 0.5 s. One button pressmoved the slider by 12 pts.
The slider could be moved to the right or left via buttons pressed by
the index and middle finger on the participant’s right hand. See Sup-
plementary Fig. 4 for an example of raw ratings time courses for
one video.
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Neuroimaging acquisition. The study was conducted at the Stanford
University Center for Cognitive and Neurobiological Imaging (CNI)
using a 3 T GE Discovery MR750 scanner (running ESE version 23.1
v02: the GE operating system) and a 32-channel Nova Medical head
coil. The scan began with a 3-plane localizer or scout scan to find the
participant’s head. Next, we collected a 3D T1-weighted anatomical
scan at 0.9mm isotropic resolution (Flip Angle = 12; FOV= 23). This
scan uses GE’s “BRAVO” sequence. This was followed by a higher-
order shim and a fieldmapwas collected before each functional scan.
Functional scans used a gradient echo sequence (Full brain BOLD EPI,
TR = 2 s, TE = 25ms, FOV= 23.2, Flip Angle = 77, 46 slices at a 2.9mm
slice thickness, Acquisition Order = Interleaved, voxel size =
2.9mm^3). A 3x in-plane acceleration was used to reduce EPI dis-
tortion. Functional image acquisition was divided into two runs.
Between runs there was a break of approximately 15–30 s where the
experimenter checked the participant to make sure they were com-
fortable and alert.

Quantification and statistical analysis
Outlier removal. No outlier subjects were found nor removed from
this dataset. One participant experienced a technical error where they
were shown duplicate trials. Duplicate trials were removed from this
participant’s data prior to analysis. No other data were excluded from
the analyses.

Preprocessing of ratings. Intent and inference ratings were down-
sampled from (0.5 s) to the rate of the TR (2 s). Next, both sets of
ratings were range-normalized within participants (for observers,
range normalization was done across all stimuli). Range-
normalization involved subtracting the minimum of that partici-
pant’s ratings then dividing by the [max - min] of that person’s rat-
ings, from a rating at any given time point. This is also known as
feature scaling, and it yields values that are shifted and rescaled so
that all values range between 0 and 1. Next, those ratings were
adjusted into 5 levels of valence-independent emotional intensity.
That is, ratings between 0.41–0.50 and 0.51–0.60 were set to level 1;
ratings between 0.31–0.40 and 0.61–70. 0 to level 2; ratings between
0.21–0.30 and 0.71–0.80 to level 3; ratings between 0.11–0.20 and
0.81–0.90 to level 4; and ratings between 0 - 0. 10 and 0.91–1.00 to
level 5. Level 5 is the highest intensity rating. This was done because
naturalistic stories often combine positive and negative emotions
and can signal positive and negative information at a faster rate than
we can sample the brain data. For example, a participant may be
describing both the sadness they felt and the love they felt after the
death of a family member. These are both intense, complex emo-
tions, so removing valence from individual ratings allows us to better
model dynamic shifts in emotion signaling and to isolate signatures
of signal intent from an observer’s inference. This decision was
inspired by the Circumplex Model of Emotion52. However, for com-
pleteness, we include an analysis that attempts to predict five levels
of valence (both intent and inference) from observer brain activity
(see Fig. S11).

Derivation of empathic accuracy. Empathic accuracy ratings were
constructed by first subtracting the normalized intent ratings from the
normalized observer inference ratings, across the whole time series.
These ratings were then converted into five levels where the highest
(level 5) reflects times where there was no difference between the
observer’s ratings and target intent, that is, when observers weremost
accurate. The lowest (level 1) reflects when there was a maximal dif-
ference between the observer’s ratings and target intent in either
direction; that is, when observers were least accurate. This measure is
not valence independent. For additional video-by-video metrics of
moment-by-moment empathic accuracy that confirm task validity see
Supplementary Table 1.

fMRI preprocessing. Imaging data were first converted into BIDS via
in-house scripts. All data were then preprocessed using FMRIPREP
version 1.4.1-201953,54 a Nipype based tool55,56 (RRID: SCR_002502)
based tool. Each T1w (T1-weighted) volume was corrected for INU
(intensity non-uniformity) using N4BiasFieldCorrection v2.1.057 and
skull-stripped using antsBrainExtraction.sh v2.1.0 (using the OASIS
template). Brain surfaces were reconstructed using recon-all from
FreeSurfer v6.0.158 (RRID: SCR_001847), and the brain mask estimated
was refined with a custom variation of the method to reconcile ANTs-
derived and FreeSurfer-derived segmentations of the cortical gray
matter of Mindboggle59 (RRID: SCR_002438). Spatial normalization to
the ICBM 152 Nonlinear Asymmetrical template version 2009c60

(RRID:SCR_008796) was performed through nonlinear registration
with the antsRegistration tool of ANTs v2.1.061 (RRID: SCR_004757),
using brain-extracted versions of both T1w volumeand template. Brain
tissue segmentation of cerebrospinal fluid (CSF), white-matter (WM)
and gray-matter (GM)was performed on the brain-extracted T1w using
fast62 (FSL v5.0.9, RRID: SCR_002823).

Functional data was slice time corrected using 3dTshift fromAFNI
v16.2.0763 (RRID: SCR_005927) and motion corrected using mcflirt
(FSL v5.0.9)64. This was followed by co-registration to the corre-
sponding T1w using boundary-based registration65 with six degrees of
freedom, using bbregister (FreeSurfer v6.0.1). Motion correcting
transformations, BOLD-to-T1w transformation and T1w-to-template
(MNI) warp were concatenated and applied in a single step using
antsApplyTransforms (ANTs v2.1.0) using Lanczos interpolation. Phy-
siological noise regressors were extracted applying CompCor66. Prin-
cipal components were estimated for the two CompCor variants:
temporal (tCompCor) and anatomical (aCompCor). Amask to exclude
signal with cortical origin was obtained by eroding the brain mask,
ensuring it only contained subcortical structures. Six tCompCor
components were then calculated, including only the top 5% variable
voxels within that subcortical mask. For aCompCor, six components
were calculatedwithin the intersection of the subcorticalmask and the
union of CSF and WM masks calculated in T1w space, after their pro-
jection to the native space of each functional run. Framewise
displacement67 was calculated for each functional run using the
implementation of Nipype.

Univariate analysis. Preprocessed BOLD runs were concatenated for
each participant. Next a participant-specific design matrix was cre-
ated. It included 36 nuisance regressors extracted via FMRIPREP.
These nuisance regressors included CSF and white matter regressors
and their derivatives as well as 3D motion regressors and their deri-
vatives, and spikes ormotion outliers. Next, the regressors of interest
were added to the design matrix and three unique “single-trial”
models were fit to the observers’ brains. The first modeled “signal
intent,” the next “observer inference,” and the last modeled
“empathic accuracy.”

Description of training and validation sets. Regressors were con-
structed for each rating quintile for each video stimulus (24 trials) and
input into the participant’s designmatrix (see Fig. S3B). 120 is the max
number of ratings regressors an individual participant could have.
Because participants made individual ratings for each video, the
number of regressors for each participant varied. Participantsmade on
average 96.07 (10.97 STD; range = [64 – 115]) ratings each, across the
whole study. Ratings regressors were convolved using the canonical
HRF function from the SPM12 toolbox (https://www.fil.ion.ucl.ac.uk/
spm/). The nuisance regressors and intercept were added to each
designmatrix and then an ordinary least squares (OLS) regression was
run for each participant. This entire procedure was repeated three
times, for the three unique rating types (target intent self-ratings,
observer interference ratings, and empathic accuracy). Variance
Inflation Factors (VIF) were calculated for all regressors of interest to
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perform data quality control. Event trials with a VIF greater than three
standard deviations from an individual’s mean were removed as out-
liers.We tested for intercorrelation across the designmatrix and found
no issues of multicollinearity within the regressors of interest.

The results of these participant-level single-trial univariate
models of the fMRI timeseries data were six sets (five quintiles) of
coefficient maps for each observer. The first set contained five levels
of “intended” intensity for audiovisual stimuli. This became the
training set for LASSO-PCR model 1 (the intent model featured in
Fig. 2). The second set contained five levels of inference intensity for
audiovisual stimuli. This becomes the training set for LASSO-PCR
model 2 (the inference model featured in Fig. 3). The separability of
these two sets of participant-level data was later tested via SVM (see
Fig. 4). The validation data for models 1 and 2 are comprised of the
third and fourth sets of data, respectively, which contain five levels of
intended intensity for auditory-only and visual-only stimuli (valida-
tion set for model 1) and five levels of inference intensity for
auditory-only and visual-only stimuli (validation set for model 2).
Finally, the fifth and sixth sets contain five levels of empathic accu-
racy. The fifth set is for audiovisual stimuli and the sixth set is for
auditory-only and visual-only stimuli. These empathic accuracy
models are agnostic to level of intensity. The behavior of models 1
and 2 are tested on these unique data in Fig. 5.

Predictive analyses
Model training. Whole brain coefficient maps derived from the single-
trial models were averaged within each intensity quintile so that each
participant had five coefficient maps, one for each level of intensity.
We implemented a LASSO-PCR27 model (error type = Mean Squared
Error (MSE) where the number of principal components (PCs) was
automatically determined using the rank of the scaled training data
matrix (rank function inMATLAB). Voxel weight maps were generated
by projecting a linear combination of all PCs’ weights back into voxel
space. LASSOwas performedusing the lasso_rocha() function called by
predict() a standard function in the CANLab toolbox (https://github.
com/canlab). This function automatically determines the λ hyper-
parameter. The number of retained coefficients (lasso number = 120)
wasdeterminedbyMSE. Themodelwas trained, via LOO-CV, topredict
the intensity level (1 − 5). LASSO-PCR is a machine-learning-
based–based regression technique. Due to its penalization method,
LASSO regression simultaneously performs feature selection and
model estimation27. This procedure is similar to that whichwas used to
development the neurologic pain signature (NPS)30 and the picture-
induced negative emotion signature (PINES)29. This procedure was
performed twice. First, for the intent ratings and second for the
observer inference ratings. The resultswere twobrain-basedmodelsof
signal intent and socioemotional inference, respectively. Model train-
ing accuracy was assessed by calculating prediction-outcome corre-
lations (Pearson’s r) across each CV-fold.

Bootstrap hypothesis test. To determine which brain areas made
reliable contributions to prediction, we used a bootstrap hypothesis
test (5000 samples) over the model weights. For each voxel, we
resampled participants with replacement. Each bootstrap replicate
was created using MATLAB’s bootstrp function, which samples the
rows of the data matrix with replacement and computes a statistic
(here, themean coefficient) on eachbootstrap sample.We generated a
distribution of coefficients for each voxel. To conduct a significance
test we shifted the bootstrap distribution to zero by subtracting the
mean coefficient. Next, we computed a standardized z-score for the
original coefficients using the standard deviation of the bootstrap
distribution. Finally, we calculated p-values using the normal cumula-
tive distribution function (normcdf) to determine statistical sig-
nificance. We used the p values to threshold the maps to interpret
feature importance.

Model validation. To validate the models, we applied it to analogous
intent and inference brain activity during the auditory-only and visual-
only trails. These validation maps also had five levels of target self-
reported emotion intensity and five levels of inferred emotion inten-
sity. Validation trials were “held out,” meaning that they were not
included in training or tested on during training.

There were two validation sets-one for each model–an intent
validation set, and an inference validation set. A prediction-outcome
correlation (Pearson’s r) between themodel and each validation image
was calculated for each subject (N = 100). Then we averaged partici-
pant’s r values and compared them within and across the validation
sets. The validity of themodelwasestablished,first, by applying it to its
own validation set (i.e., the intent model was tested on the intent
validation set) and, next, by testing if the average performance was
positively greater than zero in a two-tailed single-sample t-test.

To further validate the models, we tested its specificity to its own
validation set. We did this by applying the model to the opposite
validation set (i.e., the intent model was tested on the inference vali-
dation set). Then we tested if the model’s average performance was
higher on its own validation set versus the opposite validation set via a
two-tailed paired t-test.We expected the intentmodel to have a higher
prediction-outcome correlation on the intent validation set than on
the inference validation set. Likewise, we expected the inference
model to have a higher prediction-outcome correlation on the infer-
ence validation set than the intent validation set.

Finally, an additional post hoc internal validation was performed
at the level of the training stimuli (Fig. S10). The purpose of this vali-
dation was to test whether stimuli with low overall empathic accuracy
performance at the group level contributed to themodel trainings in a
biasedway. To interrogate individual videos,we constructed a new test
setof participant-level fMRI images for each video (basedon intent and
inference rating quintiles).We then applied our twomodels to the new
test data and recorded the prediction-outcome correlations for each
video. This is analogous to the validation set/double disassociation
analyses in Figs. 2B and 3B (see also Fig. S5 for a schematic) described
above. High prediction-outcome correlations indicate the model
accurately predicted the test set. A higher prediction-outcome corre-
lation on a model’s sensitivity test (i.e., Inference model on Inference
test data) thanon amodel’s specificity test set (i.e., Inferencemodel on
Intent test data) would validate the model for that video trial. We also
tested if a video’s average empathic accuracy performance (r) was
predictive of the model’s accuracy when tested on that video using a
Pearson’s correlation (Fig. S10C–D). If low correlation videos con-
tributed to the model training in a biased way, then model accuracy
should be inflated for low correlation videos and there would be a
strong negative correlation between the overall r of a video (empathic
accuracy metric) and the model’s accuracy (r).

Characterization of pattern weights. The unthresholded predictive
weight map (see Fig. 1) was input into the NeuroSynth Image Decoder
(https://neurosynth.org/decode/) to quantitatively compare it to ima-
ges in the NeuroSynth database. This allows us to assess what beha-
viors and functions are most associated with our patterns of brain
activity across the published literature. The top 50 terms that loaded
onto the map were pruned down to remove single brain regions and
redundant concepts (like theory ofmind andToM). Then, awordcloud
was constructed of the top 20 terms. The networks and functions in
the NeuroSynth database which were most similar to the model are
depicted in the word cloud (Figs. 2 & 3), and the words are scaled by
strength of similarity.

To verify that the intent and inferencemodels are not reducible to
general processing of affect, we compared our models’ patterns with
previously published and publicly available models of affect and
emotion.We used cosine similarity, amultivariatemethod of assessing
the similarity between two vectors, to make these comparisons
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between our models’ pattern weights and eight published models of
various components of PINES29, NPS30, the Vicarious Pain Signature
(VPS)68, Empathic Care & Empathic Distress32, Social Rejection31, Gal-
vanic Skin Response (GSR)69, and Heart Rate (Heart69; see Fig. S7).
These models are available freely online (https://github.com/canlab).
Cosine similarity ranges from -1 to 1, where values closer to 0mean the
two vectors are orthogonal or perpendicular to each other. When the
value is closer to 1, it means the angle is smaller and images/brain
patterns are more similar. When the value is closer to -1, it means the
images are more opposite.

Comparison of the intent and inference
We tested the separability of participant-level intent and inference
coefficient maps at each level of intensity with a linear support vector
machine (SVM;C = 1, optimizer = Adam(adaptivemoment estimation),
LOO-CV) where “inference” maps were the positive class and “intent”
maps were the negative class. This classificationwas performed across
each level of intensity, and a receiver operating characteristic (ROC)
curve was calculated across all the CV folds (within subject; Fig. 4). In
this analysis, a classification accuracy significantly greater than chance
indicates that the activity patterns are linearly separable, and there-
fore, represent unique neural processes70. To better understand the
brain regions that distinguish between intent and inference, we per-
formedabootstrap (5000 samples) hypothesis test over thepredictive
voxel weights for the classifier trained at the highest level of intensity
(level 5) and then applied a loose threshold (P < 0.05) so that the brain
regions where intent and inference maximally diverge could be com-
pared (Fig. 4b). This thresholding was repeated also for the classifiers
trained at the other levels of intensity as well for completeness
(Fig. S10).

Model alignment and empathic accuracy
To test how our models relate to an observer’s empathic accuracy, we
took the dot-product between each model and individual subject’s
(N = 100) maps of empathic accuracy and added in the intercept to
calculate the model’s rating prediction on the test data. Then we cor-
related the resulting predictions from lowempathic accuracy trials and
high empathic accuracy trials across all participants. Low empathic
accuracy trials are when there is maximal discordance between target
and observer ratings (i.e., target rated 5 and observer rated 1) and high
empathic accuracy trials are when there is no difference between tar-
get and observer ratings (i.e., target rated 5 and observer rated 5; see
“Derivation of empathic accuracy ratings” section above for details).
Importantly, these low and high empathic accuracymaps were linearly
separable via SVM (see Fig. S12). Finally, the alignment analysis was
validated on empathic accuracy maps from the visual-only and
auditory-only trials, which are independent from the intent and infer-
ence model training data, to ensure that results were not biased. Two-
tailed independent z-tests of the correlation difference were used to
compare alignment scores (r values) and estimate confidence
internals.

During first-level modeling, the empathic accuracy regressors
may overlap in time with the intent and inference regressors because
empathic accuracy is partially derived from target and observer rat-
ings. Therefore, first we confirmed the separability of the intent and
inference subject-level betamaps from the empathic accuracy subject-
level beta maps before testing how the alignment of the intent and
inferencemodels are related to empathic accuracy. The separability of
the intent and inference beta maps from the empathic accuracy beta
maps at two levels of empathic accuracy (low accuracy and high
accuracy) were confirmed using a linear SVM (C = 1, optimizer = Andre,
LOO-CV). This classification was performed across each level of
intensity vs the low and high empathic accuracy maps. The intent and
inference maps were separable from the low and high empathic
accuracy maps (accuracy range = 57–67%; SE = 1.5–1.6%; P < 0.001).

Functional connectivity analysis
Raw fMRI timeseries data71 were cropped into the 24 video stimuli and
then preprocessed with CANLabCore by removing the same nuisance
regressors described earlier. The Brainetomme Atlas33 was used to
parcel out activity in 273 brain regions (one region in the cerebellum
was excluded for missing data so 272 are in the full model). Activity
within those regions was averaged spatially and extracted across each
video timeseries for each participant. Next, pairwise distancematrices
of the ROI timeseries were constructed for each video that appeared in
the audiovisual channel and then averaged within each person (see
Fig. S17).

Next, we correlated degree centrality of the nodes with overall
empathic accuracy (average Pearson’s r across audiovisual stimuli for
each participant) across individuals to assess which nodes in the net-
work were related to forming an inference. One participant (Subject
022 that had a technical error in counterbalancing) was excluded from
this analysis due to having had an unbalanced number of video data.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The processed data generated in this study as well as the raw beha-
vioral data have been deposited in the OSF database [https://osf.io/
cs3km/] (https://doi.org/10.17605/osf.io/cs3km). The raw fMRI
data are available on OpenNeuro under accession code ds006111
[https://openneuro.org/datasets/ds006111] (https://doi.org/10.
18112/openneuro.ds006111.v1.0.0).

Code availability
All code for this manuscript is available at https://osf.io/cs3km/
(https://doi.org/10.17605/osf.io/cs3km)72 and https://github.com/
canlab/CanlabCore.
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