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Abstract

The calculation of so-called “brain age” from structural MRIs has been an emerging

biomarker in aging research. Data suggests that discrepancies between chronological

age and the predicted age of the brain may be predictive of mortality and morbidity

(for review, see Cole, Marioni, Harris, & Deary, 2019). However, with these promising

results come technical complexities of how to calculate brain age. Various groups

have deployed methods leveraging different statistical approaches, often crafting

novel algorithms for assessing this biomarker derived from structural MRIs. There

remain many open questions about the reliability, collinearity, and predictive power

of different algorithms. Here, we complete a rigorous systematic comparison of three

commonly used, previously published brain age algorithms (XGBoost, brainageR, and

DeepBrainNet) to serve as a foundation for future applied research. First, using multi-

ple datasets with repeated structural MRI scans, we calculated two metrics of reliabil-

ity (intraclass correlations and Bland–Altman bias). We then considered correlations

between brain age variables, chronological age, biological sex, and image quality. We

also calculated the magnitude of collinearity between approaches. Finally, we used

machine learning approaches to identify significant predictors across brain age algo-

rithms related to clinical diagnoses of cognitive impairment. Using a large sample

(N = 2557), we find all three commonly used brain age algorithms demonstrate excel-

lent reliability (r > .9). We also note that brainageR and DeepBrainNet are reasonably

correlated with one another, and that the XGBoost brain age is strongly related to

image quality. Finally, and notably, we find that XGBoost brain age calculations were

more sensitive to the detection of clinical diagnoses of cognitive impairment. We

close this work with recommendations for future research studies focused on

brain age.
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1 | INTRODUCTION

Aging is a process that involves multiple factors, with the causes of

aging still poorly understood. As the human lifespan has increased, a

greater proportion of the global population is beginning to show age-

associated functional declines and disease (Roser et al., 2013). It is

therefore critical for us as a society to delineate the pathways more

richly to longevity, as well as age-associated deteriorations. To under-

stand and predict these age-related differences in health and disease,

novel approaches have emerged attempting to quantify an individual's

“biological age” and its divergence from chronological age. These have

included examination of telomeres, epigenetics, and other molecular

and cellular elements (Aubert & Lansdorp, 2008; Fraga &

Esteller, 2007; Mather et al., 2011; Pal & Tyler, 2016). Moving beyond

molecular and cellular assays, calculation of so-called “brain age” is a

novel biomarker that has recently emerged in aging research. This

type of biological age is estimated from neuroimaging scans using data

science and machine learning algorithms. Using large datasets where

age and neuroimaging scans are available, age can be estimated on

new participants only using neuroimaging data. Interestingly, these

estimates, typically calculated from structural MRI scans, can diverge

from participants' chronological age, suggesting potential alterations

in someone's biological age. This is important since we know that the

aging process does not affect people uniformly, both within and

between individuals. Given the brain's central role in regulating behav-

ior and multiple neuroendocrine processes, metrics of brain age may

be a particularly predictive indicator of age-related mortality and mor-

bidity. By understanding brain age, we may be able to build more

comprehensive models of the biological aging process, as well as bio-

markers to predict important clinical outcomes (Cole et al., 2019).

Surveying work on brain age to date, different research groups

have focused on the discrepancies between brain age and chronologi-

cal age. In this work, we refer to the difference between predicted

brain age and chronological age as brain age delta, adopting the termi-

nology used in Bashyam et al. (2021). Of note, other scholars use

varying terms to refer to this difference, including brain age gap and

brain-PAD (Cole et al., 2018; Kaufmann et al., 2019). This approach

presumes that larger differences reflect poorer health, and suggestive

evidence is growing to validate this idea. For example, Cole et al.

(2018) found that greater brain age delta derived from structural MRIs

was associated with a number of physiological measures related to

senility, including weaker grip strength, poorer lung function, and lon-

ger times to walk a short distance. Particularly notable, greater brain

age delta–derived from MRI scans of participants in their early

70s – was related to mortality years later. In this sample, older brain

age was associated with reduced lifespan, with each additional year of

brain aging being related to a �6% increase in the likelihood of death

between the ages of 72 and 80. In addition to aspects of senility and

mortality, brain age has also been connected to several psychiatric

and neurodegenerative conditions. Patients with serious psychiatric

and neurological disorders show increased brain age, including

patients with schizophrenia (Shahab et al., 2019), depression

(Kaufmann et al., 2019), borderline personality disorder (Koutsouleris

et al., 2014), and Alzheimer's disease (Franke & Gaser, 2012, 2019;

Gaser et al., 2013; Ly et al., 2020).

While promising, research deploying these approaches is still in

its infancy. There are multiple unique algorithms to calculate brain age

developed by pioneering groups. In previous brain age research, it is

common to develop and apply newly developed algorithms in the

same research report. From a technical perspective, the calculation of

brain age from structural MRIs uses a wide variety of machine learning

approaches, including Gaussian process regression, regularizing gradi-

ent boosting, and more recently, deep learning models. This has led to

a host of debates in the field about how to conceptualize and validate

these different algorithms (see Bashyam et al., 2021; Hahn

et al., 2021). Adding to this complexity, the diverse aims and applica-

tions of brain age studies result in a variety of benchmarks. For exam-

ple, one could examine the correlation between brain age and

chronological age, different estimates of error in prediction (i.e., mean

squared error), or the ability of algorithms to identify different age-

related conditions and declines (e.g., early signs of Alzheimer's dis-

ease). Examined collectively, many open questions exist regarding the

strengths and limitations of different algorithmic derivations of

brain age.

Here, our aim was to provide a systematic comparison of three

major brain age algorithms to serve as a point of reference for future

applied research. To compare the algorithms, we looked at predictive

power, reliability, and noise sensitivity. As previous research has

examined relationships between brain age delta and age-related

decline, we focused on predictive power as it relates to cognitive

impairments. Reliability is a relevant point of comparison for

researchers working with longitudinal data, and noise sensitivity is

important for researchers working with noisy data or populations that

typically produce noisy data (e.g. neuropsychiatric patients, children)

(Wylie et al., 2014).

Related to intra-algorithm reliability, we use intraclass correlation

and Bland–Altman bias metrics to compare algorithmic performance

across repeated MRI scans of the same individuals. Given validation

efforts completed during the initial development of these algorithms,

we predicted high reliability of brain age estimates across each

approach. We also examined correlations between different algo-

rithms to see the consistency of results across approaches. To under-

stand the influence of noise in MRI images, we examined relations

between image quality and brain age calculation. We examined reli-

ability and noise sensitivity in an older as well as a young sample of

participants. This was motivated by the fact that brain age algorithms

are typically developed in older age samples, but now are being

applied to young participants (e.g. Keding et al., 2021). Given recent

publications from our group (Gilmore et al., 2021), we predicted that

image quality would be negatively related to brain age estimates, with

greater brain age being found in lower quality scans. Finally, related to

predictive power, we used a data-driven, machine learning approach

to identify significant predictors across brain age algorithms related to

a commonly used outcome, clinical diagnosis of cognitive impairment.

For this question, we expected a greater brain age delta to be related

to cognitive impairment. However, for each area of investigation, we
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did not have specific predictions about the superiority of one algo-

rithm over the others.

2 | METHODS

2.1 | Datasets

For our analyses, we examined three large open-access MRI datasets,

including participants 19–100 years of age (Analytic N = 2557). Distri-

bution of ages is visualized in Figure 1.When selecting datasets for

analysis, we purposefully excluded certain datasets. A major concern

in the development of statistical models is the issue of overfitting,

when a model performs well on the training data but fails to general-

ize to new data (Ying, 2019). For this reason, we excluded all datasets

used to train relevant brain age algorithms, excluding approximately

60 datasets in total. To examine the reliability of brain age metrics, we

chose two datasets with repeated MRI scans: Amsterdam Open MRI

Collection (AOMIC) and Open Access Series of Imaging Studies

(OASIS). Many other open-access MRI datasets (e.g., Brain Genome

Superstruct Project; Nathan Kline Institute Rockland Sample) do not

have repeated structural MRI scans, or were excluded due to use in

the development of relevant brain age algorithms. We also examined

a third dataset that had reasonable variability in age (Human Connec-

tome Project-Aging [HCP-A]). While HCP-A does not have repeated

imaging assessments, this choice was motivated by the project's

improved methods for data acquisition (as opposed to “standard” 3 T

structural sequences). All data were collected on 3-Tesla (3 T) MRI

scanners. We specifically focused on 3 T MRIs, as 3 T scanners are

the most commonly-used research scanners and are also used in many

ongoing public-access and large-scale neuroimaging initiatives

(e.g., Human Connectome Project; ABCD Study®). Basic descriptions

of the datasets are found in the following section. Additional details

of the data collection are summarized in our supplemental materials.

2.2 | Amsterdam open MRI collection

AOMIC is an open-access neuroimaging dataset including structural

and functional MRI scans (Snoek et al., 2021). Here, we analyze the

“ID1000” subset of the data which comprised healthy young adults

aged 19–26 (N = 928) scanned between 2010 and 2012 at University

of Amsterdam. Participants were recruited from the general Dutch

population, with efforts to recruit from a variety of educational back-

grounds. Each participant was scanned three times in a single session

using the same imaging parameters. Specifically, MR images were

acquired with a Phillips Intera 3 T scanner. T1-weighted MR images

were acquired using a sagittal 3D-MPRAGE sequence. In addition to

MRI scanning, participants also completed many well-validated self-

report scales and behavioral assessments, including measures of cog-

nitive ability, personality, and motivation. Additional details of the

data collection are summarized in our Supplemental Materials (S1).

2.3 | Open access series of imaging studies

OASIS is a multimodal neuroimaging project centralized at

Washington University in St. Louis (LaMontagne et al., 2019). For our

work, we used OASIS-3, a dataset of normally aging and Alzheimer's

disease patients (N = 1098) aged 42–95. Six-hundred and five of

these participants were neurologically healthy, while 493 participants

presented with mild-cognitive impairment, Alzheimer's disease, and

other neurological conditions of concern. Participants were recruited

from other ongoing projects at Washington University in St. Louis

focused on Alzheimer's and aging. For our work, we used data col-

lected on Siemens TIM Trio 3 T scanners. A subset of OASIS were

scanned at multiple timepoints months or years apart (“sessions”) and
some participants were scanned multiple times in a single session

(“runs”). We included only participants with multiple runs per session.

This eliminated 329 participants.

F IGURE 1 Distribution of participant
age for the different projects we leveraged
in our analyses. The horizontal axis depicts
participant age in years, while the vertical
axis shows the number of participants
within a given age bin. Each dataset is
shown in a different color, with AOMIC
shown in red, HCP-A shown in green, and
OASIS-3 shown in blue.
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2.4 | Human connectome project in aging

HCP-A is an ongoing project collecting MRI data from 1200 healthy

adults greater than 36 years of age (Bookheimer et al., 2019). Partici-

pants were recruited using flyers, advertisements, and outreach at

community centers, with efforts to recruit a balanced number of par-

ticipants across socioeconomic classes. Data collection was completed

at 4 research sites: Massachusetts General Hospital, University of Cal-

ifornia at Los Angeles, University of Minnesota, Washington Univer-

sity in St. Louis. For this work, our sample was composed of

725 participants aged 36–100. MR images at all sites were collected

using matched Siemens Prisma 3 T scanners. T1-weighted MR images

were collected using a multi-echo sagittal 3D-MPRAGE sequence.

Participants also completed many well-validated self-report scales and

behavioral assessments, including measures of cognitive ability, per-

sonality, and mental health.

2.4.1 | Assessment of MRI image quality

Past work from our research group (Gilmore et al., 2021) has found

that T1-weighted image quality is related to volumetric measures

from commonly used morphometric tools suites (e.g. Freesurfer). We

therefore assessed image quality to: (1) exclude particularly high-

motion scans; and (2) investigate the impact of image quality on brain

age estimates. To assess MRI quality, we generated a quantitative

metric (“CAT12 score”) using the Computational Anatomy Toolbox

12 (CAT12). This metric considers four summary measures of image

quality: noise-to-contrast ratio, coefficient of joint variation,

inhomogeneity-to-contrast ratio, and root-mean-squared voxel reso-

lution. CAT12 normalizes and combines these measures using a kappa

statistic-based framework. The score is a value from 0 to 1, with

0 being the lowest quality and 1 being the highest quality. Informed

by our past work (e.g., Gilmore et al., 2021), we excluded all lower

quality scans, specifically with CAT12 scores <0.8.

2.4.2 | Analytic sample and brain age algorithms

After removing data with quality and preprocessing issues, our total

analytic sample was 2557 participants, with 928 subjects from

AOMIC, 705 subjects from HCP-A, and 584 subjects from OASIS. This

allows for examination of a younger cohort (AOMIC; 19–26 years of

age) and two middle-aged and older cohorts (over 36 years of age);

however, and of note, there were no participants between the ages of

26 and 36. This was due to constraints on data selection, described

previously in the Datasets section above.

We tested three brain age algorithms on our dataset: Kaufmann

et al. (2019) (referred to as “XGBoost”), Cole et al. (2018) (referred to

as “brainageR”), and Bashyam et al. (2021) (referred to as “DeepBrain-

Net”). We selected these three algorithms based on: open code, a

large sample size in the training dataset (>2000 participants), diversity

of machine learning models employed, and lastly, common use in

brain age research (as indexed by citations of the work). All of the

papers connected to the algorithms have been cited more than

50 times per year since their year of publication, suggesting high

adoption by neuroimaging researchers. DeepBrainNet and brainageR

operate on raw T1-weighted MRI scans, and XGBoost requires pre-

processing using Freesurfer (Fischl, 2012), an open source MRI pro-

cessing software package. We provide brief summaries of the

algorithms below. For detailed descriptions of model structure, please

see the original papers cited here. Below, we briefly outline the vary-

ing benchmarks used in original publications, noting correlations

between brain age and chronological age when available. Of note,

past work has used many different statistical tests and validation

approaches (e.g., mean squared error, accuracy), making exact com-

parisons between algorithms inaccurate or not possible. As all algo-

rithms were built using training data from multiple datasets, sites, and

scanners, we assumed that the models would be able to handle the

effect of multiple sites. We confirmed this by running a linear model

looking at the effects of site on brain age delta; this model can be

found in the supplement (S4).

2.4.3 | XGBoost brain age algorithm

XGBoost uses gradient tree boosting to predict brain age based on

1118 features extracted using Freesurfer (Kaufmann et al., 2019).

These features consist of thickness, area, and volume measurements

from a multimodal parcellation of the cerebral cortex, cerebellum, and

subcortex. Relevant code is available at: https://github.com/tobias-

kaufmann/brainage. This algorithm was trained on a large and diverse

sample (N = 39,827, female = 18,990). The sample was made up of

healthy controls aged 3–89 drawn from 42 different datasets. All

training data passed automatic quality control procedures. To account

for potential variation, Kaufmann et al. trained separate models for

male and female brain age. Using five-fold cross-validation, XGBoost

produced strong correlations between brain age and chronological

age (male: r = 0.93; female: r = 0.94). Kaufmann et al. tested the

model on subjects with psychopathology, and calculated standardized

mean difference (Cohen's d) for each group compared to a matched

healthy control, finding significant differences for dementia, MCI,

schizophrenia, and bipolar disorder. We deployed this algorithm by

first completing standard processing approaches in Freesurfer 7.1

(http://surfer.nmr.mgh.harvard.edu). The technical details of this soft-

ware suite are described in prior publications (Dale et al., 1999,

p. 199; Fischl et al., 1999, 2002, 2004). Briefly, this processing

includes motion correction and intensity normalization of

T1-weighted images, removal of non-brain tissue (Ségonne

et al., 2004), automated Talairach transformation, segmentation of

white matter and gray matter volumetric structures, and derivation of

cortical thickness. Freesurfer processing was implemented via Brain-

life.io (brainlife/app-freesurfer), which is a free, publicly funded,

cloud-computing platform for developing reproducible neuroimaging

processing pipelines and sharing data (Avesani et al., 2019;

Pestilli, 2018).
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2.4.4 | brainageR brain age algorithm

brainageR uses Gaussian Process Regression to predict brain age

based on raw, unprocessed, T1-weighted MR images (Cole

et al., 2018). Relevant code is available at: https://github.com/james-

cole/brainageR. This software uses SPM12 for segmentation and nor-

malization with custom brain templates, and loads these images into R

using the RNfiti package. Gray matter, white matter and CSF vectors

are then used to predict a brain age value with a model previously

trained with kernlab. This algorithm was trained on a sample

(N = 2001) of healthy adults aged 18–90, including scans from 14 dif-

ferent studies. Using ten-fold cross validation, brainageR produced a

strong correlation between brain age and chronological age (r = 0.92;

MAE = 5.02; RMSE = 6.31). The model was tested on a cohort of

older adults (N = 669, mean age = 72.67 ± 0.73). In the test cohort,

brain age delta did not correlate with chronological age (r = �0.01,

p = .79), which Cole et al. believe reflects individual differences in

aging. There was a significant relationship between brain age delta

and mortality (hazard ratio = 1.061), but there was no significant rela-

tionship between brain age delta and cardiovascular disease, diabetes,

or history of stroke.

2.4.5 | DeepBrainNet brain age algorithm

DeepBrainNet is a 2D convolutional neural network (CNN) built

using the inception-resnetv2 framework (Bashyam et al., 2021).

Notably, this model was initialized with random weights and trained

exclusively on MRIs to create a brain-specific model. With this algo-

rithm, raw, unprocessed, T1-weighted MR images are n4 bias cor-

rected, skull-stripped, and affine registered to an MNI-template.

This algorithm was implemented through the ANTsRNet package,

an implementation of advanced normalization tools (ANTs) in the R

programming language (Tustison et al., 2021). Relevant code for

this algorithm is located at: https://github.com/ANTsX/brainAgeR.

The algorithm was trained on a sample (N = 11,729) of healthy con-

trols aged 3–95 drawn from 18 different datasets. All training data

passed systematic quality control procedures. Bashyam et al. found

a correlation of r = 0.978 between predicted brain age and chrono-

logical age. There was no significant difference in brain age delta

between male and female subjects (male: MAE = 3.68; female:

MAE = 3.72). The authors purposefully selected a “moderately fit”
model over a loosely or tightly fit model. This was motivated by the

belief that a moderately fit model would better reveal individual dif-

ferences in pathology. To assist with the model selection process,

Bashyam et al. tested the algorithm on subjects with psychopathol-

ogy, including dementia, AD, schizophrenia, and depression. Similar

to Kaufmann et al., the authors calculated standardized mean dif-

ference (Cohen's d) for each group compared to healthy controls,

and found that the moderately fit model produced the largest

Cohen's d values in comparison to the loosely and tightly fit

models.

2.5 | Statistical analyses related to brain age
reliability

To assess the reliability of brain age calculation by algorithm, we used

two approaches of looking at reliability: intraclass correlation coeffi-

cient (ICC) and Bland–Altman analysis. Of note, for these analyses, we

only used data from AOMIC and OASIS due to the repeated scans for

each participant. ICC is a descriptive statistic indicating the degree of

agreement between two or more sets of measurements. The statistic

is similar to a bivariate correlation coefficient insofar as it has a range

from 0 to 1 and higher values represent a stronger relationship. An

ICC differs from the bivariate correlation in that it works on groups of

measurements and gives an indication of the numerical cohesion

across the given groups (McGraw & Wong, 1996). We calculated ICCs

using the statistical programming language R, with the icc function

from the package “irr” (Gamer et al., 2012). A two-way model with

absolute agreement was used in order to investigate the exact esti-

mate of brain age for each repeated scan. Although there are no

definitive guidelines for precise interpretation of ICCs, results have

frequently been binned into three (or four) quality groups where 0.0–

0.5 is “poor”, 0.50–0.75 is “moderate”, 0.75–0.9 is “good” and 0.9–1.0

is “excellent” (Cicchetti, 1994; Koo & Li, 2016). Additionally, Bland–

Altman analyses investigate reliability by considering the differences

between paired groups of measurements. In our analysis, the paired

groups are brain age predictions across two scans. As AOMIC con-

tains three scans per participant, we compared across all pairings of

scans (i.e., scan 1 versus scan 2, scan 2 versus scan 3, and scan 1 ver-

sus scan 3) and took the average difference metric. In addition to

these raw difference scores (i.e., the difference across two instances

of measurement), we also considered the proportion of difference,

calculated by taking the difference divided by the mean value for a

given pairing of measurements.

2.6 | Statistical analyses connected to image
quality and sociodemographic factors

After reliability analyses, we reduced our analytic sample to include

only the highest quality scan from each participant. This was done to

maintain statistical independence of observations. Put another way,

including repeated scans in standard regression models, but presuming

independence, would violate fundamental statistical assumptions. The

highest quality MRI scan was selected using CAT12 scores. Using

these higher quality scans, we calculated bivariate correlations

between brain age and real age. We also examined relations between

brain age and multiple relevant variables, including image quality, and

participant sex. This latter variable was included given suggestive sex

differences in brain structure and cognitive decline (Levine

et al., 2021; Ruigrok et al., 2014), likely contributing to differential esti-

mates of “brain aging”. In these analyses, we looked at associations

with both brain age and brain age delta in all three of our datasets. Of

note, many brain age researchers choose to correct for age-related
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bias using linear models or other methods (e.g., Le et al., 2018). This

correction is often done in relation to group or individual difference

variables. However, given that we were not focused on these differ-

ences and instead wanted to understand the full effects of potential

confounds on the algorithms tested, we used uncorrected correlations

in this portion of our analyses. Of note, XGBoost and DeepBrainNet

excluded low-quality scans from training data, and none of the algo-

rithms tested corrected training data for image quality.

2.7 | Statistical prediction using brain age variables

We used the OASIS dataset to look at the association between brain

age variables and cognitive impairments. Based on previous findings,

we would expect a greater brain age delta to be related to cognitive

impairment caused by neurodegenerative conditions such as Alzhei-

mer's disease. To investigate this hypothesis, participants were coded

for presence of cognitive impairment (presence = 1; absence = 0).

Cognitive impairment was determined using the Clinical Dementia

Rating (CDR) score, which ranges from 0–3 (0 = no dementia;

0.5 = questionable dementia; 1 = MCI; 2 = Moderate Cognitive

Impairment; 3 = Severe Cognitive Impairment). The presence of cog-

nitive impairment was mapped to a CDR of > = 1, including subjects

with mild to severe cognitive impairment, and excluding subjects with

no or “questionable” dementia (CDR <1). This was motivated by, and

in keeping with, recent projects focused on replicating associations

between brain age and mild cognitive impairment or dementia

(e.g., Karim et al., 2022).

Additionally, combining groups increases statistical power, which

is an issue given the modest sample of the OASIS project and the low

incidence of occurrence of cognitive impairments in the sample (0:

544, 0.5: 139, 1: 36, 2: 4). However, even grouping together CDR

scores > = 1, the cognitively impaired participants constituted only

5.5% of the data, which is far from ideal. For this reason, we imple-

mented subsampling. Specifically, we used the Synthetic Minority

Oversampling Technique (“SMOTE”), a method combining oversam-

pling and under-sampling to achieve better classifier performance on

imbalanced data (Chawla et al., 2002). We implemented SMOTE using

the package themis in R (Hvitfeldt, 2022), using an over ratio of 0.5.

Following subsampling, cognitively impaired participants accounted

for 33% of the training data.

All models were created in the programming language R, using

the tidymodels collection of packages (Kuhn et al., 2020). Individual

logistic regression models were fit for each algorithm, and these

models are detailed in the supplement. Presence of cognitive impair-

ment was entered as the binary dependent variable (presence = 1,

absence = 0). Brain age delta, chronological age, sex, and CAT12

scores were included as independent variables.

Given potential collinearity between brain age algorithms, we also

fit an elastic net (EN) model to determine the best combination of pre-

dictors of clinical status. In brief, EN machine learning algorithms use

multiple regression penalties (i.e., lasso [L1]; ridge [L2]) to prevent

overfitting of the model, compromising between penalties by weight-

ing the proportion of ridge and lasso penalties (α). To tune the penalty,

cross-validation identifies a second parameter, λ, which is the magni-

tude of the shrinkage penalty. This modeling and parameter identifica-

tion was implemented using tidymodels and glmnet (Friedman

et al., 2010). The presence of cognitive impairment was entered as

the binary dependent variable (presence = 1, absence = 0). Potential

independent variables included brain age deltas from all three algo-

rithms, chronological age, sex, and CAT12 scores. The model was

trained using ten-fold cross validation with ten repeats. We then com-

pared the relative importance of the predictor variables.

3 | RESULTS

3.1 | Brain age reliability by algorithm

Given that brain age algorithms are being used in older (Cole

et al., 2018), as well as younger (Keding et al., 2021), samples, we

computed test–retest reliability in two different open-access neuroim-

aging projects with repeated scans. For the young adults in the

AOMIC project, all three algorithms obtained ICCs greater than 0.9

(XGBoost: r = 0.935, brainageR: r = 0.983, DeepBrainNet: r = 0.979).

The mean proportion of difference across all three scans was small.

XGBoost had a mean of 6.535%, followed by brainageR with 2.449%

and DeepBrainNet with 2.04%. These differences are depicted in

Figure 2. The mean difference across all three scans was similarly

small. XGBoost and brainageR had slightly negative mean differences

of �0.139 ± 2.376 years and � 0.098 ± 0.777 years, and DeepBrain-

Net had a mean difference of 0.011 ± 0.791 years.

For the older adult sample in OASIS, all three algorithms obtained

ICCs greater than 0.95 (XGBoost: r = 0.972, brainageR: r = 0.99,

DeepBrainNet: r = 0.992). Mean proportion of difference and mean

difference across both scans were again small, with XGBoost showing

a mean proportion of difference of 2.397%, followed by brainageR

with 1.518% and DeepBrainNet with 1.259%. These differences are

depicted in Figure 3. XGBoost had a small positive mean difference of

0.021 ± 1.865 years, and brainageR and DeepBrainNet had negative

mean differences of �0.158 ± 1.483 and � 0.086 ± 1.135. Examined

collectively, all three algorithms obtained high ICCs and low mean dif-

ferences for both AOMIC and OASIS data, suggesting that these algo-

rithms are highly reliable.

Figures 2 and 3 show density plots of the mean proportion of dif-

ferences for both AOMIC and OASIS. The x-axes represent the pro-

portion difference, ranging from 0 to 5, and the y-axes represent the

probability density, calculated using a Gaussian kernel.

3.2 | Relations between brain age, chronological
age, and sex brain age algorithms

Given that reliability metrics were similar in older and younger sam-

ples, we next examined correlations between brain age, brain age

delta, and sociodemographic variables combining across these pro-

jects. When examining brain age and chronological age, there were

strong correlations between these variables for each algorithm. All
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correlations were greater than 0.9, with r = 0.936 for XGBoost,

r = 0.966 for brainageR, and r = 0.96 for DeepBrainNet. As Kaufmann

et al. separated models for male and female subjects, we also com-

puted correlations for brain age and chronological age for each sex.

With XGBoost, correlations were comparable across sex (female:

r = 0.932; male: r = .941). This pattern was similar for brainageR

(female: r = 0.966; male: r = 0.968) and DeepBrainNet (female:

r = 0.958; male: r = 0.963). All correlations had p-values <.001. This

relationship is visualized in Figure 4.

We additionally investigated associations between brain age delta

and chronological age. Across the algorithms, there was a great variabil-

ity in the relationship between brain age delta and chronological age:

r = �0.776 for XGBoost, r = �0.225 for brainageR, and r = �0.489

for DeepBrainNet. All these correlations had p-values <.001.

All algorithms had significant negative correlations between brain

age and image quality: XGBoost (r = �0.381, p < .001), brainageR

(r = �0.458, p < .001), DeepBrainNet (r = �0.464, p < .001). In com-

parison to brain age and image quality, the relationship between brain

age delta and image quality showed great variability in correlations.

For XGBoost, there was modest correlation between image quality

and brain age delta (r = 0.36, p < .001). brainageR also had a small

negative correlation between brain age delta and quality (r = �0.084,

p < .001). For DeepBrainNet, there was no significant relationship

between brain age delta and image quality (r = 0.033, p = .105).

These relationships are visualized in Figure 5.

3.3 | Brain age delta as a predictor of dementia
status

To examine brain age delta as a predictor of dementia status, we built

an elastic net (EN) model. The results are summarized in Table 1 and

F IGURE 2 Density Plot of Differences
in 3 Brain Age Algorithms across the
AOMIC sample. The horizontal axis shows
the portion of differences between
repeated scans (as a percentage). The
vertical axis is the density (or frequency) of
such bias. Each brain age algorithm is shown
in a different color with XGBoost shown in
light red, brainageR shown in light green,

and DeepBrainNet shown in light blue.

F IGURE 3 Density Plot of Differences
in 3 Brain Age Algorithms across the OASIS
sample. The horizontal axis shows the
portion of differences between repeated
scans (as a percentage). The vertical axis is
the density (or frequency) of such bias. Each
brain age algorithm is shown in a different
color with XGBoost shown in light red,
brainageR shown in light green, and
DeepBrainNet shown in light blue.
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Figures 6 and 7. Visualizations related to model tuning can be found in

the supplement. Additionally, we built individual logistic regression

models for each algorithm, which can be found in the supplement (S4).

EN models, similar to lasso regression models, select variables

based on their predictive power. Additionally, for highly correlated

variables, only the strongest predictor is included. This means not all

independent variables are included in the final model. For our EN

model, the final model after training uses XGBoost brain age delta,

DeepBrainNet brain age delta, chronological age, and CAT12 score as

predictors. Sex and brainageR brain age delta were excluded from the

final predictors. The final model has an accuracy of 0.911.

Our model has a significant drawback. While it predicts cognitive

impairment with a high degree of accuracy, the recall is only 0.45. This

means for all positive cases, the model only correctly classifies 18/40

cases. A confusion matrix is provided below.

4 | DISCUSSION

Through the analysis of multiple large-scale, open-access neuroimag-

ing datasets (Snoek et al., 2021; LaMontagne et al., 2019; Bookheimer

et al., 2019), we investigated critical elements of the calculation of

brain age. With an eye toward applied research, we examined the reli-

ability, noise sensitivity, and predictive power of three commonly used

brain age algorithms: XGBoost, brainageR, and DeepBrainNet.

F IGURE 4 Scatterplots of the relationship between brain age and real age across all algorithms. There are three panels, each representing a
different brain age algorithm—XGBoost is on the far-left panel, brainageR is in the middle, and DeepBrainNet is on the far-right panel. The
horizontal axis shows participant chronological (real) age, while the vertical axis represents predicted brain age. In each panel, red dots represent
female participants, and teal dots represent male participants.

F IGURE 5 Correlation plot between brain age, brain age delta,
chronological age, and CAT12 score across algorithms. There are rows
and columns representing different relevant variables. The correlation
between variables is shown at the confluence of a row and a column.
The strength of a correlation is represented by the color of the
background, and the exact value is written in black text. Negative
correlations colored red, with strong negative correlations in dark red
and weak negative correlations in light red. Positive correlations are
colored blue, with strong positive correlations in dark blue and weak
positive correlations in light blue. Weak or no correlation is colored
white. BA = brain age.

TABLE 1 A table depicting statistical parameter estimates from an
elastic net logistic model (with clinical status as a binary dependent
variable, and multiple brain age deltas [from different algorithms] and
other covariates as independent variables)

Variable β (std. coef.)

XGBoost - Brain age delta 0.530

brainageR - Brain age delta 0

DeepBrainNet - Brain age delta 0.415

Chronological age 0.733

Sex (male) 0

CAT12 score �0.259

Note: Standardized coefficients and standard errors are shown in different

columns, with statistics for each independent variable shown in each row.
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Regarding reliability, we found all brain age algorithms were highly

reliable. This was assessed through ICC and Bland–Altman metrics in

samples of older and younger participants with repeated MRI scans.

Related to brain age calculation and demographic variables of interest,

there were strong correlations between these variables for each algo-

rithm. Calculated brain age for each algorithm strongly tracked with

chronological age across males and females (r's > .9). Connected to

image quality, all algorithms had significant negative correlations

between brain age and image quality. Notably, this was with brain

age, and not brain age delta. Correlations between brain age delta and

image quality were modest for XGBoost, but near zero for brainageR

and DeepBrainNet. Chronological age, similar to brain age, had a

significant negative correlation with image quality. Turning to clinical

prediction, individual logistic models suggested that brain age delta

was a significant predictor of cognitive impairment (see supplement

S4). In a penalized regression model more suited to deal with collinear

variables, chronological age was the strongest predictor of cognitive

impairment; however, while our model achieved high accuracy, the

model performed poorly on identifying subjects with cognitive impair-

ment (accuracy = 0.911, recall = 0.45). Brain age deltas derived from

XGBoost and DeepBrainNet were also significant predictors, and brai-

nageR's brain age delta was dropped from the final model.

Synthesizing across these different results, use of XGBoost may

come with equal advantages and disadvantages. While all algorithms

demonstrated excellent reliability as assessed by ICCs, it is notable

that XGBoost had higher levels of bias (6.535%) in our younger sam-

ple of participants as assessed by Bland–Altman metrics. In the aggre-

gate, this variation was small (�0.139 years) and that project (AOMIC)

had a very narrow age range. However, in younger cohorts, this could

lead to additional noise variance when examining this brain age algo-

rithm in relation to important individual differences. Similarly,

XGBoost's brain age delta had a modest correlation with image qual-

ity. This will be important to consider when selecting brain age algo-

rithms in different cohorts. If the population is likely to have high

levels of movement (i.e., children; individuals with significant cognitive

deficits and impulsivity), this could create additional noise, and cloud

relations between brain age delta and other variables of interest.

Notably, past work (Ronan et al., 2016) has found that estimates of

cortical volume and thickness decreased with greater motion. Given

that typical aging is also associated with cortical atrophy (Scahill et al.,

2003), structural MRI images of lower image quality and with greater

motion would likely have lower estimates of cortical volume and

F IGURE 6 Caption: ROC curve for the
final model, trained across 10 repeats.

F IGURE 7 A confusion matrix for the EN predictions. True
negative = 641. False negative = 22. False positive = 42. True
positive = 18.
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thickness, potentially biasing different algorithms that use these fea-

tures in brain age calculation. For example, XGBoost uses derived

morphometric parcels from Freesurfer and past work from our group

has noted strong relations between Freesurfer outputs and image

quality (Gilmore et al., 2021). Despite the poor recall of the EN model,

it is still notable that XGBoost brain age delta was the most sensitive

at differentiating cognitive impairment across the logistic and penal-

ized models. Importantly, these models included a metric of image

quality, suggesting that XGBoost's brain age derivation explained

important variance above and beyond this nuisance variable.

Thinking about our findings in relation to past reports, similar pat-

terns have been noted individually for each algorithm regarding reli-

ability and correlations with chronological age. Publications detailing

the development of each algorithm have reported similar ICCs and

correlations. Our project, however, is the first to examine these ele-

ments across multiple algorithms. While no algorithm that we investi-

gated was superior on reliability metrics, it will be critical for future

projects focused on novel metrics of brain age to compare perfor-

mance to other algorithms as relative benchmarks. Publications that

simply report metrics of their newly derived algorithm's performance

may be less useful to the field if this performance is not necessarily

different or superior to previously developed approaches. As noted in

our results section, brainageR and DeepBrainNet were highly corre-

lated (r = 0.97), suggesting that these algorithms may be identifying

similar patterns of advanced brain aging. It will again be critical for

future projects focused on novel metrics of brain age to show that

novel algorithms are identifying unique and additive variance in

brain age.

Of note and important for future work is that we examined fairly

significant clinical issues in thinking about prediction. There is ongoing

work looking at different individual difference measures that span a

more normative continuum of functioning. It could be particularly use-

ful to see if brain ages from these different algorithms relate to these

individual differences (e.g., stress exposure; general cognitive func-

tioning; obesity, Ronan et al., 2016; Shokri-Kojori et al., 2021). Simi-

larly, it will be critical for future investigations to probe multimodal

MRI calculations of brain age. All of the algorithms examined here

focused on T1-weighted images, either processed in Freesurfer

(XGBoost) or in original NIfTI format (brainageR; DeepBrainNet).

More recent work has leveraged diffusion imaging, often in concert

with T1-weighted images for prediction of brain age (Beck

et al., 2021; Richard et al., 2018). It is likely that brain ages calculated

through multimodal MRI and with multiple algorithms could be more

powerful in explaining age-associated functional declines and disease.

While we believe we advanced applied understanding of brain

age calculation, our work is not without limitations. First, all of our

data is cross-sectional in nature, and it will be important to think

about estimation and validation of different performance metrics in

participants with repeated MRI scans separated by long periods of

time. By seeing levels of within- and between-person change in rela-

tion to different algorithms, we may be able to derive a particularly

powerful window into age-associated functional declines and disease,

and different clinically relevant issues. Second, we did not specifically

focus on variations in MRI scanners, instead pooling across scanning

types. One cohort (HCP-A) had technically sophisticated MRI acquisi-

tion, potentially more sensitive than other “out of the box” neuroim-

aging scans. While we found similar results for HCP-A and OASIS

(a dataset of similarly aged participants scanned with less sophisti-

cated MR techniques), we did not specifically probe for variation

across MRI scanners. Third, we tested three commonly used algo-

rithms where code was publicly shared for mass implementation of

brain age calculation. There are many in-press and preprinted manu-

scripts engineering new calculations of brain age. Such novel algo-

rithms may exhibit superior performance and fewer limitations than

the approaches we examined here. Finally, we were unable to discern

the factors that might be driving variations in algorithmic perfor-

mance. Brain age calculated via XGBoost uses Freesurfer parcels in its

brain age calculation, while brainageR and DeepBrainNet both work

off of less-processed NIfTI files. It may be possible to optimize ele-

ments of Freesurfer or other software to improve different metrics of

reliability and prediction. Connected to this, our team is particularly

interested in the effects of image quality on brain age calculation and

how to probe different datasets where repeated MRI scans are

acquired from the same individuals but there is intentional variability

in motion-related artifacts. Tackling these and other open questions

related to brain age could significantly advance our understanding of

healthy, as well as accelerated, aging processes.

Limitations notwithstanding, additional research on “biological
age” is imperative. Richer information about the brain and brain aging

could be important for those focused on age-related mortality and

morbidity. Here, we provide important information about multiple

brain age algorithms for researchers to consider when they deploy this

emerging biomarker. Thoughtful consideration about reliability, noise

tolerance, and predictive power will be critical when making decisions

about different brain age algorithms, especially with an ever-growing

landscape of potential ways to calculate this variable.
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