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1 | INTRODUCTION
Aging is a process that involves multiple factors, with the causes of
aging still poorly understood. As the human lifespan has increased, a
greater proportion of the global population is beginning to show age-
associated functional declines and disease (Roser et al., 2013). It is
therefore critical for us as a society to delineate the pathways more
richly to longevity, as well as age-associated deteriorations. To under-
stand and predict these age-related differences in health and disease,
novel approaches have emerged attempting to quantify an individual's
“biological age” and its divergence from chronological age. These have
included examination of telomeres, epigenetics, and other molecular
and cellular elements (Aubert & Lansdorp, 2008; Fraga &
Esteller, 2007; Mather et al., 2011; Pal & Tyler, 2016). Moving beyond
molecular and cellular assays, calculation of so-called “brain age” is a
novel biomarker that has recently emerged in aging research. This
type of biological age is estimated from neuroimaging scans using data
science and machine learning algorithms. Using large datasets where
age and neuroimaging scans are available, age can be estimated on
new participants only using neuroimaging data. Interestingly, these
estimates, typically calculated from structural MRI scans, can diverge
from participants' chronological age, suggesting potential alterations
in someone's biological age. This is important since we know that the
aging process does not affect people uniformly, both within and
between individuals. Given the brain's central role in regulating behav-
ior and multiple neuroendocrine processes, metrics of brain age may
be a particularly predictive indicator of age-related mortality and mor-
bidity. By understanding brain age, we may be able to build more
comprehensive models of the biological aging process, as well as bio-
markers to predict important clinical outcomes (Cole et al., 2019).
Surveying work on brain age to date, different research groups
have focused on the discrepancies between brain age and chronologi-
cal age. In this work, we refer to the difference between predicted
brain age and chronological age as brain age delta, adopting the termi-
nology used in Bashyam et al. (2021). Of note, other scholars use
varying terms to refer to this difference, including brain age gap and
brain-PAD (Cole et al., 2018; Kaufmann et al., 2019). This approach
presumes that larger differences reflect poorer health, and suggestive
evidence is growing to validate this idea. For example, Cole et al.
(2018) found that greater brain age delta derived from structural MRIs
was associated with a number of physiological measures related to
senility, including weaker grip strength, poorer lung function, and lon-
ger times to walk a short distance. Particularly notable, greater brain
age delta-derived from MRI scans of participants in their early
70s - was related to mortality years later. In this sample, older brain
age was associated with reduced lifespan, with each additional year of
brain aging being related to a ~6% increase in the likelihood of death
between the ages of 72 and 80. In addition to aspects of senility and
mortality, brain age has also been connected to several psychiatric
and neurodegenerative conditions. Patients with serious psychiatric
and neurological disorders show increased brain age, including
patients with schizophrenia (Shahab et al., 2019), depression
(Kaufmann et al., 2019), borderline personality disorder (Koutsouleris

et al., 2014), and Alzheimer's disease (Franke & Gaser, 2012, 2019;
Gaser et al., 2013; Ly et al., 2020).

While promising, research deploying these approaches is still in
its infancy. There are multiple unique algorithms to calculate brain age
developed by pioneering groups. In previous brain age research, it is
common to develop and apply newly developed algorithms in the
same research report. From a technical perspective, the calculation of
brain age from structural MRIs uses a wide variety of machine learning
approaches, including Gaussian process regression, regularizing gradi-
ent boosting, and more recently, deep learning models. This has led to
a host of debates in the field about how to conceptualize and validate
these different algorithms (see Bashyam et al., 2021; Hahn
et al,, 2021). Adding to this complexity, the diverse aims and applica-
tions of brain age studies result in a variety of benchmarks. For exam-
ple, one could examine the correlation between brain age and
chronological age, different estimates of error in prediction (i.e., mean
squared error), or the ability of algorithms to identify different age-
related conditions and declines (e.g., early signs of Alzheimer's dis-
ease). Examined collectively, many open questions exist regarding the
strengths and limitations of different algorithmic derivations of
brain age.

Here, our aim was to provide a systematic comparison of three
major brain age algorithms to serve as a point of reference for future
applied research. To compare the algorithms, we looked at predictive
power, reliability, and noise sensitivity. As previous research has
examined relationships between brain age delta and age-related
decline, we focused on predictive power as it relates to cognitive
impairments. Reliability is a relevant point of comparison for
researchers working with longitudinal data, and noise sensitivity is
important for researchers working with noisy data or populations that
typically produce noisy data (e.g. neuropsychiatric patients, children)
(Wylie et al., 2014).

Related to intra-algorithm reliability, we use intraclass correlation
and Bland-Altman bias metrics to compare algorithmic performance
across repeated MRI scans of the same individuals. Given validation
efforts completed during the initial development of these algorithms,
we predicted high reliability of brain age estimates across each
approach. We also examined correlations between different algo-
rithms to see the consistency of results across approaches. To under-
stand the influence of noise in MRI images, we examined relations
between image quality and brain age calculation. We examined reli-
ability and noise sensitivity in an older as well as a young sample of
participants. This was motivated by the fact that brain age algorithms
are typically developed in older age samples, but now are being
applied to young participants (e.g. Keding et al., 2021). Given recent
publications from our group (Gilmore et al., 2021), we predicted that
image quality would be negatively related to brain age estimates, with
greater brain age being found in lower quality scans. Finally, related to
predictive power, we used a data-driven, machine learning approach
to identify significant predictors across brain age algorithms related to
a commonly used outcome, clinical diagnosis of cognitive impairment.
For this question, we expected a greater brain age delta to be related

to cognitive impairment. However, for each area of investigation, we
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did not have specific predictions about the superiority of one algo-
rithm over the others.

2 | METHODS

21 | Datasets

For our analyses, we examined three large open-access MRI datasets,
including participants 19-100 years of age (Analytic N = 2557). Distri-
bution of ages is visualized in Figure 1.When selecting datasets for
analysis, we purposefully excluded certain datasets. A major concern
in the development of statistical models is the issue of overfitting,
when a model performs well on the training data but fails to general-
ize to new data (Ying, 2019). For this reason, we excluded all datasets
used to train relevant brain age algorithms, excluding approximately
60 datasets in total. To examine the reliability of brain age metrics, we
chose two datasets with repeated MRI scans: Amsterdam Open MRI
Collection (AOMIC) and Open Access Series of Imaging Studies
(OASIS). Many other open-access MRI datasets (e.g., Brain Genome
Superstruct Project; Nathan Kline Institute Rockland Sample) do not
have repeated structural MRI scans, or were excluded due to use in
the development of relevant brain age algorithms. We also examined
a third dataset that had reasonable variability in age (Human Connec-
tome Project-Aging [HCP-A]). While HCP-A does not have repeated
imaging assessments, this choice was motivated by the project's
improved methods for data acquisition (as opposed to “standard” 3 T
structural sequences). All data were collected on 3-Tesla (3 T) MRI
scanners. We specifically focused on 3 T MRIs, as 3 T scanners are
the most commonly-used research scanners and are also used in many
ongoing public-access and large-scale neuroimaging initiatives
(e.g., Human Connectome Project; ABCD Study®). Basic descriptions
of the datasets are found in the following section. Additional details

of the data collection are summarized in our supplemental materials.

2.2 | Amsterdam open MRI collection

AOMIC is an open-access neuroimaging dataset including structural
and functional MRI scans (Snoek et al., 2021). Here, we analyze the
“ID1000” subset of the data which comprised healthy young adults
aged 19-26 (N = 928) scanned between 2010 and 2012 at University
of Amsterdam. Participants were recruited from the general Dutch
population, with efforts to recruit from a variety of educational back-
grounds. Each participant was scanned three times in a single session
using the same imaging parameters. Specifically, MR images were
acquired with a Phillips Intera 3 T scanner. T1-weighted MR images
were acquired using a sagittal 3D-MPRAGE sequence. In addition to
MRI scanning, participants also completed many well-validated self-
report scales and behavioral assessments, including measures of cog-
nitive ability, personality, and motivation. Additional details of the

data collection are summarized in our Supplemental Materials (S1).

2.3 | Open access series of imaging studies

OASIS is a
Washington University in St. Louis (LaMontagne et al., 2019). For our

multimodal neuroimaging project centralized at
work, we used OASIS-3, a dataset of normally aging and Alzheimer's
disease patients (N = 1098) aged 42-95. Six-hundred and five of
these participants were neurologically healthy, while 493 participants
presented with mild-cognitive impairment, Alzheimer's disease, and
other neurological conditions of concern. Participants were recruited
from other ongoing projects at Washington University in St. Louis
focused on Alzheimer's and aging. For our work, we used data col-
lected on Siemens TIM Trio 3 T scanners. A subset of OASIS were
scanned at multiple timepoints months or years apart (“sessions”) and
some participants were scanned multiple times in a single session
(“runs”). We included only participants with multiple runs per session.

This eliminated 329 participants.
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24 | Human connectome project in aging

HCP-A is an ongoing project collecting MRI data from 1200 healthy
adults greater than 36 years of age (Bookheimer et al., 2019). Partici-
pants were recruited using flyers, advertisements, and outreach at
community centers, with efforts to recruit a balanced number of par-
ticipants across socioeconomic classes. Data collection was completed
at 4 research sites: Massachusetts General Hospital, University of Cal-
ifornia at Los Angeles, University of Minnesota, Washington Univer-
sity in St. Louis. For this work, our sample was composed of
725 participants aged 36-100. MR images at all sites were collected
using matched Siemens Prisma 3 T scanners. T1-weighted MR images
were collected using a multi-echo sagittal 3D-MPRAGE sequence.
Participants also completed many well-validated self-report scales and
behavioral assessments, including measures of cognitive ability, per-

sonality, and mental health.

241 | Assessment of MRl image quality

Past work from our research group (Gilmore et al., 2021) has found
that T1-weighted image quality is related to volumetric measures
from commonly used morphometric tools suites (e.g. Freesurfer). We
therefore assessed image quality to: (1) exclude particularly high-
motion scans; and (2) investigate the impact of image quality on brain
age estimates. To assess MRI quality, we generated a quantitative
metric (“CAT12 score”) using the Computational Anatomy Toolbox
12 (CAT12). This metric considers four summary measures of image
quality: noise-to-contrast ratio, coefficient of joint variation,
inhomogeneity-to-contrast ratio, and root-mean-squared voxel reso-
lution. CAT12 normalizes and combines these measures using a kappa
statistic-based framework. The score is a value from O to 1, with
0 being the lowest quality and 1 being the highest quality. Informed
by our past work (e.g., Gilmore et al., 2021), we excluded all lower

quality scans, specifically with CAT12 scores <0.8.

2.4.2 | Analytic sample and brain age algorithms
After removing data with quality and preprocessing issues, our total
analytic sample was 2557 participants, with 928 subjects from
AOMIC, 705 subjects from HCP-A, and 584 subjects from OASIS. This
allows for examination of a younger cohort (AOMIC; 19-26 years of
age) and two middle-aged and older cohorts (over 36 years of age);
however, and of note, there were no participants between the ages of
26 and 36. This was due to constraints on data selection, described
previously in the Datasets section above.

We tested three brain age algorithms on our dataset: Kaufmann
et al. (2019) (referred to as “XGBoost”), Cole et al. (2018) (referred to
as “brainageR”), and Bashyam et al. (2021) (referred to as “DeepBrain-
Net”). We selected these three algorithms based on: open code, a
large sample size in the training dataset (>2000 participants), diversity

of machine learning models employed, and lastly, common use in

brain age research (as indexed by citations of the work). All of the
papers connected to the algorithms have been cited more than
50 times per year since their year of publication, suggesting high
adoption by neuroimaging researchers. DeepBrainNet and brainageR
operate on raw T1-weighted MRI scans, and XGBoost requires pre-
processing using Freesurfer (Fischl, 2012), an open source MRI pro-
cessing software package. We provide brief summaries of the
algorithms below. For detailed descriptions of model structure, please
see the original papers cited here. Below, we briefly outline the vary-
ing benchmarks used in original publications, noting correlations
between brain age and chronological age when available. Of note,
past work has used many different statistical tests and validation
approaches (e.g., mean squared error, accuracy), making exact com-
parisons between algorithms inaccurate or not possible. As all algo-
rithms were built using training data from multiple datasets, sites, and
scanners, we assumed that the models would be able to handle the
effect of multiple sites. We confirmed this by running a linear model
looking at the effects of site on brain age delta; this model can be
found in the supplement (S4).

24.3 | XGBoost brain age algorithm

XGBoost uses gradient tree boosting to predict brain age based on
1118 features extracted using Freesurfer (Kaufmann et al., 2019).
These features consist of thickness, area, and volume measurements
from a multimodal parcellation of the cerebral cortex, cerebellum, and
subcortex. Relevant code is available at: https://github.com/tobias-
kaufmann/brainage. This algorithm was trained on a large and diverse
sample (N = 39,827, female = 18,990). The sample was made up of
healthy controls aged 3-89 drawn from 42 different datasets. All
training data passed automatic quality control procedures. To account
for potential variation, Kaufmann et al. trained separate models for
male and female brain age. Using five-fold cross-validation, XGBoost
produced strong correlations between brain age and chronological
age (male: r = 0.93; female: r = 0.94). Kaufmann et al. tested the
model on subjects with psychopathology, and calculated standardized
mean difference (Cohen's d) for each group compared to a matched
healthy control, finding significant differences for dementia, MClI,
schizophrenia, and bipolar disorder. We deployed this algorithm by
first completing standard processing approaches in Freesurfer 7.1
(http://surfer.nmr.mgh.harvard.edu). The technical details of this soft-
ware suite are described in prior publications (Dale et al., 1999,
p. 199; Fischl et al, 1999, 2002, 2004). Briefly, this processing
includes
T1-weighted
et al, 2004), automated Talairach transformation, segmentation of

motion correction and intensity normalization of

images, removal of non-brain tissue (Ségonne
white matter and gray matter volumetric structures, and derivation of
cortical thickness. Freesurfer processing was implemented via Brain-
life.io (brainlife/app-freesurfer), which is a free, publicly funded,
cloud-computing platform for developing reproducible neuroimaging
processing pipelines and sharing data (Avesani et al, 2019;

Pestilli, 2018).
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244 | brainageR brain age algorithm

brainageR uses Gaussian Process Regression to predict brain age
based on raw, unprocessed, T1-weighted MR images (Cole
et al., 2018). Relevant code is available at: https://github.com/james-
cole/brainageR. This software uses SPM12 for segmentation and nor-
malization with custom brain templates, and loads these images into R
using the RNfiti package. Gray matter, white matter and CSF vectors
are then used to predict a brain age value with a model previously
trained with kernlab. This algorithm was trained on a sample
(N = 2001) of healthy adults aged 18-90, including scans from 14 dif-
ferent studies. Using ten-fold cross validation, brainageR produced a
strong correlation between brain age and chronological age (r = 0.92;
MAE = 5.02; RMSE = 6.31). The model was tested on a cohort of
older adults (N = 669, mean age = 72.67 + 0.73). In the test cohort,
brain age delta did not correlate with chronological age (r = —0.01,
p = .79), which Cole et al. believe reflects individual differences in
aging. There was a significant relationship between brain age delta
and mortality (hazard ratio = 1.061), but there was no significant rela-
tionship between brain age delta and cardiovascular disease, diabetes,

or history of stroke.

2.4.5 | DeepBrainNet brain age algorithm

DeepBrainNet is a 2D convolutional neural network (CNN) built
using the inception-resnetv2 framework (Bashyam et al, 2021).
Notably, this model was initialized with random weights and trained
exclusively on MRIs to create a brain-specific model. With this algo-
rithm, raw, unprocessed, T1-weighted MR images are n4 bias cor-
rected, skull-stripped, and affine registered to an MNI-template.
This algorithm was implemented through the ANTsRNet package,
an implementation of advanced normalization tools (ANTSs) in the R
programming language (Tustison et al., 2021). Relevant code for
this algorithm is located at: https://github.com/ANTsX/brainAgeR.
The algorithm was trained on a sample (N = 11,729) of healthy con-
trols aged 3-95 drawn from 18 different datasets. All training data
passed systematic quality control procedures. Bashyam et al. found
a correlation of r = 0.978 between predicted brain age and chrono-
logical age. There was no significant difference in brain age delta
between male and female subjects (male: MAE = 3.68; female:
MAE = 3.72). The authors purposefully selected a “moderately fit”
model over a loosely or tightly fit model. This was motivated by the
belief that a moderately fit model would better reveal individual dif-
ferences in pathology. To assist with the model selection process,
Bashyam et al. tested the algorithm on subjects with psychopathol-
ogy, including dementia, AD, schizophrenia, and depression. Similar
to Kaufmann et al., the authors calculated standardized mean dif-
ference (Cohen's d) for each group compared to healthy controls,
and found that the moderately fit model produced the largest
Cohen's d values in comparison to the loosely and tightly fit

models.

2.5 | Statistical analyses related to brain age
reliability

To assess the reliability of brain age calculation by algorithm, we used
two approaches of looking at reliability: intraclass correlation coeffi-
cient (ICC) and Bland-Altman analysis. Of note, for these analyses, we
only used data from AOMIC and OASIS due to the repeated scans for
each participant. ICC is a descriptive statistic indicating the degree of
agreement between two or more sets of measurements. The statistic
is similar to a bivariate correlation coefficient insofar as it has a range
from O to 1 and higher values represent a stronger relationship. An
ICC differs from the bivariate correlation in that it works on groups of
measurements and gives an indication of the numerical cohesion
across the given groups (McGraw & Wong, 1996). We calculated ICCs
using the statistical programming language R, with the icc function
from the package “irr” (Gamer et al., 2012). A two-way model with
absolute agreement was used in order to investigate the exact esti-
mate of brain age for each repeated scan. Although there are no
definitive guidelines for precise interpretation of ICCs, results have
frequently been binned into three (or four) quality groups where 0.0-
0.5 is “poor”, 0.50-0.75 is “moderate”, 0.75-0.9 is “good” and 0.9-1.0
is “excellent” (Cicchetti, 1994; Koo & Li, 2016). Additionally, Bland-
Altman analyses investigate reliability by considering the differences
between paired groups of measurements. In our analysis, the paired
groups are brain age predictions across two scans. As AOMIC con-
tains three scans per participant, we compared across all pairings of
scans (i.e., scan 1 versus scan 2, scan 2 versus scan 3, and scan 1 ver-
sus scan 3) and took the average difference metric. In addition to
these raw difference scores (i.e., the difference across two instances
of measurement), we also considered the proportion of difference,
calculated by taking the difference divided by the mean value for a

given pairing of measurements.

2.6 | Statistical analyses connected to image
quality and sociodemographic factors

After reliability analyses, we reduced our analytic sample to include
only the highest quality scan from each participant. This was done to
maintain statistical independence of observations. Put another way,
including repeated scans in standard regression models, but presuming
independence, would violate fundamental statistical assumptions. The
highest quality MRI scan was selected using CAT12 scores. Using
these higher quality scans, we calculated bivariate correlations
between brain age and real age. We also examined relations between
brain age and multiple relevant variables, including image quality, and
participant sex. This latter variable was included given suggestive sex
differences in brain structure and cognitive decline (Levine
et al., 2021; Ruigrok et al., 2014), likely contributing to differential esti-
mates of “brain aging”. In these analyses, we looked at associations
with both brain age and brain age delta in all three of our datasets. Of

note, many brain age researchers choose to correct for age-related
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bias using linear models or other methods (e.g., Le et al., 2018). This
correction is often done in relation to group or individual difference
variables. However, given that we were not focused on these differ-
ences and instead wanted to understand the full effects of potential
confounds on the algorithms tested, we used uncorrected correlations
in this portion of our analyses. Of note, XGBoost and DeepBrainNet
excluded low-quality scans from training data, and none of the algo-

rithms tested corrected training data for image quality.

2.7 | Statistical prediction using brain age variables
We used the OASIS dataset to look at the association between brain
age variables and cognitive impairments. Based on previous findings,
we would expect a greater brain age delta to be related to cognitive
impairment caused by neurodegenerative conditions such as Alzhei-
mer's disease. To investigate this hypothesis, participants were coded
for presence of cognitive impairment (presence = 1; absence = 0).
Cognitive impairment was determined using the Clinical Dementia
Rating (CDR) score, which ranges from 0-3 (0 = no dementia;
0.5 = questionable dementia; 1 = MCI; 2 = Moderate Cognitive
Impairment; 3 = Severe Cognitive Impairment). The presence of cog-
nitive impairment was mapped to a CDR of > = 1, including subjects
with mild to severe cognitive impairment, and excluding subjects with
no or “questionable” dementia (CDR <1). This was motivated by, and
in keeping with, recent projects focused on replicating associations
between brain age and mild cognitive impairment or dementia
(e.g., Karim et al., 2022).

Additionally, combining groups increases statistical power, which
is an issue given the modest sample of the OASIS project and the low
incidence of occurrence of cognitive impairments in the sample (O:
544, 0.5: 139, 1: 36, 2: 4). However, even grouping together CDR
scores > = 1, the cognitively impaired participants constituted only
5.5% of the data, which is far from ideal. For this reason, we imple-
mented subsampling. Specifically, we used the Synthetic Minority
Oversampling Technique (“SMOTE”), a method combining oversam-
pling and under-sampling to achieve better classifier performance on
imbalanced data (Chawla et al., 2002). We implemented SMOTE using
the package themis in R (Hvitfeldt, 2022), using an over ratio of 0.5.
Following subsampling, cognitively impaired participants accounted
for 33% of the training data.

All models were created in the programming language R, using
the tidymodels collection of packages (Kuhn et al., 2020). Individual
logistic regression models were fit for each algorithm, and these
models are detailed in the supplement. Presence of cognitive impair-
ment was entered as the binary dependent variable (presence = 1,
absence = 0). Brain age delta, chronological age, sex, and CAT12
scores were included as independent variables.

Given potential collinearity between brain age algorithms, we also
fit an elastic net (EN) model to determine the best combination of pre-
dictors of clinical status. In brief, EN machine learning algorithms use
multiple regression penalties (i.e., lasso [L1]; ridge [L2]) to prevent
overfitting of the model, compromising between penalties by weight-
ing the proportion of ridge and lasso penalties (a). To tune the penalty,

cross-validation identifies a second parameter, A\, which is the magni-
tude of the shrinkage penalty. This modeling and parameter identifica-
tion was implemented using tidymodels and glmnet (Friedman
et al., 2010). The presence of cognitive impairment was entered as
the binary dependent variable (presence = 1, absence = 0). Potential
independent variables included brain age deltas from all three algo-
rithms, chronological age, sex, and CAT12 scores. The model was
trained using ten-fold cross validation with ten repeats. We then com-

pared the relative importance of the predictor variables.

3 | RESULTS

3.1 | Brain age reliability by algorithm

Given that brain age algorithms are being used in older (Cole
et al., 2018), as well as younger (Keding et al., 2021), samples, we
computed test-retest reliability in two different open-access neuroim-
aging projects with repeated scans. For the young adults in the
AOMIC project, all three algorithms obtained ICCs greater than 0.9
(XGBoost: r = 0.935, brainageR: r = 0.983, DeepBrainNet: r = 0.979).
The mean proportion of difference across all three scans was small.
XGBoost had a mean of 6.535%, followed by brainageR with 2.449%
and DeepBrainNet with 2.04%. These differences are depicted in
Figure 2. The mean difference across all three scans was similarly
small. XGBoost and brainageR had slightly negative mean differences
of —0.139 + 2.376 years and — 0.098 + 0.777 years, and DeepBrain-
Net had a mean difference of 0.011 + 0.791 years.

For the older adult sample in OASIS, all three algorithms obtained
ICCs greater than 0.95 (XGBoost: r = 0.972, brainageR: r = 0.99,
DeepBrainNet: r = 0.992). Mean proportion of difference and mean
difference across both scans were again small, with XGBoost showing
a mean proportion of difference of 2.397%, followed by brainageR
with 1.518% and DeepBrainNet with 1.259%. These differences are
depicted in Figure 3. XGBoost had a small positive mean difference of
0.021 + 1.865 years, and brainageR and DeepBrainNet had negative
mean differences of —0.158 + 1.483 and — 0.086 * 1.135. Examined
collectively, all three algorithms obtained high ICCs and low mean dif-
ferences for both AOMIC and OASIS data, suggesting that these algo-
rithms are highly reliable.

Figures 2 and 3 show density plots of the mean proportion of dif-
ferences for both AOMIC and OASIS. The x-axes represent the pro-
portion difference, ranging from O to 5, and the y-axes represent the

probability density, calculated using a Gaussian kernel.

3.2 | Relations between brain age, chronological
age, and sex brain age algorithms

Given that reliability metrics were similar in older and younger sam-
ples, we next examined correlations between brain age, brain age
delta, and sociodemographic variables combining across these pro-
jects. When examining brain age and chronological age, there were
strong correlations between these variables for each algorithm. All
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FIGURE 2 Density Plot of Differences
in 3 Brain Age Algorithms across the
AOMIC sample. The horizontal axis shows
the portion of differences between
repeated scans (as a percentage). The 1.5
vertical axis is the density (or frequency) of
such bias. Each brain age algorithm is shown
in a different color with XGBoost shown in
light red, brainageR shown in light green,
and DeepBrainNet shown in light blue.
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FIGURE 3 Density Plot of Differences
in 3 Brain Age Algorithms across the OASIS
sample. The horizontal axis shows the
portion of differences between repeated
scans (as a percentage). The vertical axis is 1.5
the density (or frequency) of such bias. Each
brain age algorithm is shown in a different
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correlations were greater than 0.9, with r = 0.936 for XGBoost,
r = 0.966 for brainageR, and r = 0.96 for DeepBrainNet. As Kaufmann
et al. separated models for male and female subjects, we also com-
puted correlations for brain age and chronological age for each sex.
With XGBoost, correlations were comparable across sex (female:
r = 0.932; male: r = .941). This pattern was similar for brainageR
(female: r = 0.966; male: r = 0.968) and DeepBrainNet (female:
r = 0.958; male: r = 0.963). All correlations had p-values <.001. This
relationship is visualized in Figure 4.

We additionally investigated associations between brain age delta
and chronological age. Across the algorithms, there was a great variabil-
ity in the relationship between brain age delta and chronological age:
r = —0.776 for XGBoost, r = —0.225 for brainageR, and r = —0.489
for DeepBrainNet. All these correlations had p-values <.001.

All algorithms had significant negative correlations between brain
age and image quality: XGBoost (r = —0.381, p < .001), brainageR

(r = —0.458, p < .001), DeepBrainNet (r = —0.464, p < .001). In com-
parison to brain age and image quality, the relationship between brain
age delta and image quality showed great variability in correlations.
For XGBoost, there was modest correlation between image quality
and brain age delta (r = 0.36, p <.001). brainageR also had a small
negative correlation between brain age delta and quality (r = —0.084,
p <.001). For DeepBrainNet, there was no significant relationship
between brain age delta and image quality (r = 0.033, p =.105).
These relationships are visualized in Figure 5.

3.3 |
status

Brain age delta as a predictor of dementia

To examine brain age delta as a predictor of dementia status, we built
an elastic net (EN) model. The results are summarized in Table 1 and
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white. BA = brain age.

Figures 6 and 7. Visualizations related to model tuning can be found in
the supplement. Additionally, we built individual logistic regression
models for each algorithm, which can be found in the supplement (S4).

EN models, similar to lasso regression models, select variables
based on their predictive power. Additionally, for highly correlated

TABLE 1 A table depicting statistical parameter estimates from an
elastic net logistic model (with clinical status as a binary dependent
variable, and multiple brain age deltas [from different algorithms] and
other covariates as independent variables)

Variable B (std. coef.)
XGBoost - Brain age delta 0.530
brainageR - Brain age delta 0
DeepBrainNet - Brain age delta 0.415
Chronological age 0.733

Sex (male) 0

CAT12 score —0.259

Note: Standardized coefficients and standard errors are shown in different
columns, with statistics for each independent variable shown in each row.

variables, only the strongest predictor is included. This means not all
independent variables are included in the final model. For our EN
model, the final model after training uses XGBoost brain age delta,
DeepBrainNet brain age delta, chronological age, and CAT12 score as
predictors. Sex and brainageR brain age delta were excluded from the
final predictors. The final model has an accuracy of 0.911.

Our model has a significant drawback. While it predicts cognitive
impairment with a high degree of accuracy, the recall is only 0.45. This
means for all positive cases, the model only correctly classifies 18/40

cases. A confusion matrix is provided below.

4 | DISCUSSION

Through the analysis of multiple large-scale, open-access neuroimag-
ing datasets (Snoek et al., 2021; LaMontagne et al., 2019; Bookheimer
et al, 2019), we investigated critical elements of the calculation of
brain age. With an eye toward applied research, we examined the reli-
ability, noise sensitivity, and predictive power of three commonly used
brain age algorithms: XGBoost, brainageR, and DeepBrainNet.
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FIGURE 6 Caption: ROC curve for the CDR >= 1
final model, trained across 10 repeats.
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FIGURE 7 A confusion matrix for the EN predictions. True
negative = 641. False negative = 22. False positive = 42. True
positive = 18.

Regarding reliability, we found all brain age algorithms were highly
reliable. This was assessed through ICC and Bland-Altman metrics in
samples of older and younger participants with repeated MRI scans.
Related to brain age calculation and demographic variables of interest,
there were strong correlations between these variables for each algo-
rithm. Calculated brain age for each algorithm strongly tracked with
chronological age across males and females (r's > .9). Connected to
image quality, all algorithms had significant negative correlations
between brain age and image quality. Notably, this was with brain
age, and not brain age delta. Correlations between brain age delta and
image quality were modest for XGBoost, but near zero for brainageR
and DeepBrainNet. Chronological age, similar to brain age, had a

significant negative correlation with image quality. Turning to clinical
prediction, individual logistic models suggested that brain age delta
was a significant predictor of cognitive impairment (see supplement
S4). In a penalized regression model more suited to deal with collinear
variables, chronological age was the strongest predictor of cognitive
impairment; however, while our model achieved high accuracy, the
model performed poorly on identifying subjects with cognitive impair-
ment (accuracy = 0.911, recall = 0.45). Brain age deltas derived from
XGBoost and DeepBrainNet were also significant predictors, and brai-
nageR's brain age delta was dropped from the final model.
Synthesizing across these different results, use of XGBoost may
come with equal advantages and disadvantages. While all algorithms
demonstrated excellent reliability as assessed by ICCs, it is notable
that XGBoost had higher levels of bias (6.535%) in our younger sam-
ple of participants as assessed by Bland-Altman metrics. In the aggre-
gate, this variation was small (—0.139 years) and that project (AOMIC)
had a very narrow age range. However, in younger cohorts, this could
lead to additional noise variance when examining this brain age algo-
rithm in relation to important individual differences. Similarly,
XGBoost's brain age delta had a modest correlation with image qual-
ity. This will be important to consider when selecting brain age algo-
rithms in different cohorts. If the population is likely to have high
levels of movement (i.e., children; individuals with significant cognitive
deficits and impulsivity), this could create additional noise, and cloud
relations between brain age delta and other variables of interest.
Notably, past work (Ronan et al., 2016) has found that estimates of
cortical volume and thickness decreased with greater motion. Given
that typical aging is also associated with cortical atrophy (Scahill et al.,
2003), structural MRI images of lower image quality and with greater
motion would likely have lower estimates of cortical volume and
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thickness, potentially biasing different algorithms that use these fea-
tures in brain age calculation. For example, XGBoost uses derived
morphometric parcels from Freesurfer and past work from our group
has noted strong relations between Freesurfer outputs and image
quality (Gilmore et al., 2021). Despite the poor recall of the EN model,
it is still notable that XGBoost brain age delta was the most sensitive
at differentiating cognitive impairment across the logistic and penal-
ized models. Importantly, these models included a metric of image
quality, suggesting that XGBoost's brain age derivation explained
important variance above and beyond this nuisance variable.

Thinking about our findings in relation to past reports, similar pat-
terns have been noted individually for each algorithm regarding reli-
ability and correlations with chronological age. Publications detailing
the development of each algorithm have reported similar ICCs and
correlations. Our project, however, is the first to examine these ele-
ments across multiple algorithms. While no algorithm that we investi-
gated was superior on reliability metrics, it will be critical for future
projects focused on novel metrics of brain age to compare perfor-
mance to other algorithms as relative benchmarks. Publications that
simply report metrics of their newly derived algorithm's performance
may be less useful to the field if this performance is not necessarily
different or superior to previously developed approaches. As noted in
our results section, brainageR and DeepBrainNet were highly corre-
lated (r = 0.97), suggesting that these algorithms may be identifying
similar patterns of advanced brain aging. It will again be critical for
future projects focused on novel metrics of brain age to show that
novel algorithms are identifying unique and additive variance in
brain age.

Of note and important for future work is that we examined fairly
significant clinical issues in thinking about prediction. There is ongoing
work looking at different individual difference measures that span a
more normative continuum of functioning. It could be particularly use-
ful to see if brain ages from these different algorithms relate to these
individual differences (e.g., stress exposure; general cognitive func-
tioning; obesity, Ronan et al., 2016; Shokri-Kojori et al., 2021). Simi-
larly, it will be critical for future investigations to probe multimodal
MRI calculations of brain age. All of the algorithms examined here
focused on T1-weighted images, either processed in Freesurfer
(XGBoost) or in original NIfTI format (brainageR; DeepBrainNet).
More recent work has leveraged diffusion imaging, often in concert
with T1-weighted images for prediction of brain age (Beck
et al., 2021; Richard et al., 2018). It is likely that brain ages calculated
through multimodal MRI and with multiple algorithms could be more
powerful in explaining age-associated functional declines and disease.

While we believe we advanced applied understanding of brain
age calculation, our work is not without limitations. First, all of our
data is cross-sectional in nature, and it will be important to think
about estimation and validation of different performance metrics in
participants with repeated MRI scans separated by long periods of
time. By seeing levels of within- and between-person change in rela-
tion to different algorithms, we may be able to derive a particularly
powerful window into age-associated functional declines and disease,
and different clinically relevant issues. Second, we did not specifically
focus on variations in MRI scanners, instead pooling across scanning

types. One cohort (HCP-A) had technically sophisticated MRI acquisi-
tion, potentially more sensitive than other “out of the box” neuroim-
aging scans. While we found similar results for HCP-A and OASIS
(a dataset of similarly aged participants scanned with less sophisti-
cated MR techniques), we did not specifically probe for variation
across MRI scanners. Third, we tested three commonly used algo-
rithms where code was publicly shared for mass implementation of
brain age calculation. There are many in-press and preprinted manu-
scripts engineering new calculations of brain age. Such novel algo-
rithms may exhibit superior performance and fewer limitations than
the approaches we examined here. Finally, we were unable to discern
the factors that might be driving variations in algorithmic perfor-
mance. Brain age calculated via XGBoost uses Freesurfer parcels in its
brain age calculation, while brainageR and DeepBrainNet both work
off of less-processed NIfTI files. It may be possible to optimize ele-
ments of Freesurfer or other software to improve different metrics of
reliability and prediction. Connected to this, our team is particularly
interested in the effects of image quality on brain age calculation and
how to probe different datasets where repeated MRI scans are
acquired from the same individuals but there is intentional variability
in motion-related artifacts. Tackling these and other open questions
related to brain age could significantly advance our understanding of
healthy, as well as accelerated, aging processes.

Limitations notwithstanding, additional research on “biological
age” is imperative. Richer information about the brain and brain aging
could be important for those focused on age-related mortality and
morbidity. Here, we provide important information about multiple
brain age algorithms for researchers to consider when they deploy this
emerging biomarker. Thoughtful consideration about reliability, noise
tolerance, and predictive power will be critical when making decisions
about different brain age algorithms, especially with an ever-growing

landscape of potential ways to calculate this variable.
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